[이동훈기출] 해설, 좋은점 ?
이동훈 기출문제집의 저자, 이동훈입니다. :)이동훈 기출문제집의 해설에 대하여 궁금해하시는 분들이 있는 것 같아서, 이 글을 씁니다.우선 각 과목의 문제집과 해설집의 페이지 수를 비교해보면수학2 : (해설집)=(문제집)* 1.16미적분1 : (해설집)=(문제집)* 1.36확률과 통계 : (해설집)=(문제집)*1.14미적분2 : (해설집)=(문제집)*1.55기하와 벡터 : (해설집)=(문제집)*2.45(단, 해설집에는 순수하게 해설만 수록되어 있습니다.최근의 유행처럼 해설집에 문제가 포함되어 있지는 않습니다.)수학1, 확률과 통계는 문제집과 해설집의 페이지 수 차이가 거의 없지만,미적분1, 미적분2, 기하와 벡터는 해설집의 페이지 수가 확연히 많습니다.후자의 세 과목의 해설집의 페이지 수가 많은 이유는 다음과 같습니다.[미적분1](1) 등비급수 기하응용 : 서로 다른 기하적인 성질을 적용한 서로 다른 풀이 가능한 수록(2) 미분법 : 그래프의 개형에 대한 문제의 경우, 풀이가 두 가지 이상이면 다른 풀이 가능한 수록(3) 모든 단원에 대하여 교과서의 정의/정리/공식/법칙/성질을 이용하여 수학적으로 자세하게 풀이... 등등[미적분2](1) 삼각함수의 기하응용 : 서로 다른 기하적인 성질을 적용한 서로 다른 풀이 가능한 수록(2) 미분법 : 그래프의 개형에 대한 문제의 경우, 풀이가 두 가지 이상이면 다른 풀이 가능한 수록(3) 모든 단원에 대하여 교과서의 정의/정리/공식/법칙/성질을 이용하여 수학적으로 자세하게 풀이... 등등[기하와 벡터](1) 정사영 : 이면각의 정의, 정사영의 길이/넓이, 법선벡터의 내적에 의한 3가지 풀이 가능한 수록(2) 공간도형, 벡터 : (대부분의 기출문제집에서 제외된) 기하의 결정 조건에 의거한 엄밀한 설명(3) 공간도형, 벡터 : 공간도형 단원의 문제의 경우 벡터를 이용한 해석을 다른 풀이로 수록(4) 벡터의 내적 : 기하의 성질, 벡터의 성질, 좌표평면/공간의 도입에 의한 3가지 풀이 가능한 수록(5) 모든 단원에 대하여 교과서의 정의/정리/공식/법칙/성질을 이용하여 수학적으로 자세하게 풀이... 등등그리고 [확률과 통계] 과목의 경우(1) 경우의 수 : Case 구분의 풀이와 여집합을 이용한 풀이 가능한 모두 수록(2) 확률 : 확률의 덧셈/곱셈정리와 수학적 확률을 이용한 풀이 가능한 모두 수록... 등등갯수를 세는 문제의 경우에는, 과목에 관계없이, 가능한 여집합을 이용한 풀이까지 수록하려고 노력하였습니다.몇몇 난문의 경우에는 (예를 들어 2014학년도 B형 29번) 이동훈 기출문제집에서만 볼 수 있는 풀이와 참고를 수록하였습니다.예를 들어 2009학년도 공통 14번의 경우 아래와 같이 서로 다른 3가지의 풀이를 수록하였으며, 이 세가지의 풀이를 모두 수록하고 있는 기출문제집은 제가 알기로는 없습니다.예를 들어 2013학년도 9월 가형 29번의 경우에는 두 가지의 풀이를 수록하고 있는데, 두 번째 풀이는 대부분의 기출문제집에서 직관적으로 풀이한 것이 비하여, 이동훈 기출문제집에서는 삼수선의 정리를 이용하여 수학적으로 엄밀하게 설명하였습니다.올해 처음 내는 책이라 여러모로 부족한 점이 있습니다만, 해설 만큼은 굉장히 정성들여 쓴 책입니다.다양한 해설, 수학적으로 엄밀한 서술형 해설을 원하는 수험생 분들에게 어울리는 책이 되지 않을까 ... 하는 생각을 해봅니다.긴 글 읽어주셔서 감사합니다. :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아 나 고3도 아닌데 왤케 떨리지ㅜ
-
항상 듣기 다 맞고 181920 주제에서 2개정도 맞고 도표/무관문/434445/...
-
영어 찍특 추천 0
어디서보나요 ㅜㅜ
-
전 9시까지
-
지금 학교오니까 0
조용하고 너무 좋네요
-
재수생이라 교육청가서 발급받아야하는데
-
ㄴ... 내일이 수능이라뇨...
-
수험표랑 신분증 확인은 매교시마다 도장 찍을때 확인하나요??ㅠㅠ
-
고 1 내신베이스로 어떻게든 되겠죠? 9평 1등급 11덮 5등급..
-
얼버기 4
-
강사듣는 걸 무슨 스킬 연마하는 것처럼 보는 애들이 있음 13
이 강사 듣다가 저 강사 들으면 섞이지 않을까요 ㅠㅡㅠ 흠 그런가..
-
오히려 평소와 같이 보내면 긴장도 덜돼서 꿀잠자고 수능보러 간듯
-
목표 : 오르비에 들어오지 않겠습니다
-
" 하루 남은 이시점. 제발 이것들만은!!! 파이널 벼락치기로 역전합시다!!!! "...
-
아 ㅠ
-
오늘중으로 한번 터지려나
-
그것이 수능이니까
-
니게tv 21일차는 저녁에... {정리좀하고(18시쯤)}
-
??
-
책상 흔들릴 때 책상 다리에 이면지 같은거 두는거 감독관 허락 받아야되나요?
-
행복하자 2
행복하자.우리
-
10월부터 달렸다면 기적 만들어낼수 있음 수능 대박내고 서울대 ㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㅣ
-
수1에서 - 육십분법이 아닌 호도법을 쓰는 이유는 무엇일까? 각 방법의 장단점은...
-
이를 증명해주실 수 있으신가요?
-
이창무랑 차영진 커리를 섞으라는 분의 댓글을 보고 어떻게 섞는건지 궁금해서...
-
추워 1
추웡추워
-
야키니쿠가서 우설 안창살에 생맥주 아츠강을 적시고 싶다
-
신분증 대체 2
재수생인데 민증을 잃어버렸어요.., 여권은 유효기간 만료되었는데 대체 가능한거...
-
닿았어닿았어닿았어닿았어닿았어닿았어닿았어 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ골때리네진짜
-
너무 힘들다 10
내인생왜이러냐
-
에타를 보니 고려대학교 에타로 바뀐거 깉더군요
-
수능판 뜨자구요 0
저도 올해보는 마지막 수능으로 꼭 한의대 쟁취할거고 다른분들도 올해 수능이 마지막 수능 되시기를
-
몸이안낫는다 1
ㅈ같네 진짜
-
옵붕이 기상완료 2
어거지로 생활패턴 맞추기 성공
-
하아
-
옯끼야아아악 0
으악 꺄악 끼야아악
-
안올것같지만 반드시 오는 그날이....
-
멘탈 개나간다 1시에 누웠는데
-
ㅈㄴ시끄러
-
ㅠㅠ
-
윾건...그저 goat 하지만 어림없지 '누가 배웠는데'
-
계정 헷갈린 Fㅔ미 검거 ㅋㅋㅋㅋㅋㅋㅋ 진짜 특정 집단에서 계정 사서 여론 조작하는 거 맞다니까
-
진인사대천명 0
수능 다 잘 보길 바라지 않습니다 죽어라 노력한 사람은 실력보다 더 잘 보길...
-
26학년도 수능 0
낼부터 시작할건데 같이 가실 분 댓ㄱㄱ
-
가오도 주세요 그냥 제게 강림해주세요 빙의해주세요 선생님의 가르침 헛되지 않게 해볼게요
-
왜 자꾸 머릿속에 멤도냐 이기상 선생님 목소리 억양이랑 같이 생각남
-
좀 열심히 할걸 싶기도 한데 뭐 그동안 안했던거보면 난 과거로 가도 또 애니보고...
-
술 괜히 마셨다
-
Team 07 D-366
-
노베 재수 4
핑계지만 예체능이라 고3 올라오고 나서는 공부를 거의 안했습니다. 내신은...
잘풀고 있습니다!!좋은 교재 만들어 주셔서 감사해요:) 근데 댓글이 없네요 ㅠ
첫번째 댓글 달아주셨네요. ^^
1쇄에는 오타/오류가 있으므로, http://atom.ac/books/3888/ 에서 오류정정 꼭 확인하여주세요. 올해 수능에서 좋은 성적 받으셔서, 원하는 대학 가시길~ :)
안녕하세여 이과인데 미1까지 사려고 생각중인데 수열의 극한 파트까지 풀어보는게 좋을까요?
가형 응시자 분들의 경우에는 미적분1의 함수의 극한, 미분법, 적분법을 (특히 미분법, 적분법의 4점짜리 난문은 반드시) 풀 것을 권하고 있습니다. 수열의 극한과 급수는 선택적입니다. 급수 단원의 기하응용에서 다루는 중학교 과정의 기하적인 성질은 미적분2 삼각함수 단원의 기하응용에서도 다루고 있기도 합니다.
감사합니다~ :)
이동훈 선생님 안녕하세요? 선생님 기출문제집으로
나형 3권 사려구 해요. 혹시 미적분1에 (문과생이 풀면 도움 될)가형 기출문제도 포함되어있는지 궁금해요~
가형(이과)에서 출제된 다항함수의 미분법, 적분법 문제는 빠짐없이 미적분1에 수록되어 있습니다. 감사합니다~ :)