유리화는 왜하는걸까? & 판별식이 음수일때 왜 이차방정식은 항상 0보다 클까?
안녕하세요. 일반청의미입니다. 오랜만이에요. 놀고 먹느라 정신없었습니당.
현재 공신활동이랑 멘토링이랑 다양하게 활동하고있어서 안바쁜듯 바빠요.
모두가 생각을 많이할 수 있도록 좀더 신박한 주제를 갖고오고 싶은데 어떨지 모르겠네요.
하여튼 그렇습니다. 열심히할게요.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? : http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
저번주의 칼럼은 바로 이거였어요!
y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까? : http://orbi.kr/00011115763
그렇다면 오늘도 정답갑니다.
교과서나 문제집에 보면, 통분할 필요가 굳이 없는 식에서도 유리화를 하는데,
저는 굳이 그럴필요는 없다고 생각해요. 계산이 간편해지라고 유리화 하는건데
오히려 계산을 더해야하지요. 예를들면 1/루트2 같은 식을 굳이 루트2/2로 바꿀필요는 없습니다.
또한 함수의 극한 문제에서, 최고차항의 계수러 바로 푸는 학생이 있습니다.
그런 유형 100문제 푸는데 시간 5분도 안걸릴걸요.
함수의 극한 단원은, 수렴하는 함수에서만 극한의 계산성질이 성립한다는 것을 배우는 단원입니다.
수렴함을 반드시 이해하고 넘어가셔야 해요.
간단하지만 생각해봐야할 주제를 쓰고있습니다.
이번주 주제도 마찬가지죠. 갑니다.
(이거 수식있으면 통으로 스크린샷 찍어서 올리는거.. 레알 답이없습니다.)
수식으로나, 그림으로 증명할 수 있겠죠. 사실 쉽습니다.
다만 저 성질을 이용하여 논리적으로 증명해보았나가 문제지요.
덧글로 의견 달아주시면 됩니다. 이번엔 답을 달아주실 분이 매우 많을것같아요.
그래서 짤막한 칼럼 주제를 하나 더 던지도록 하겠습니다. 기하와 벡터에요.
2011 수능 22번입니다.
이문제 어떻게 풀까요? 왜 그렇게 풀어야할까요?
그 풀이는 어떤 개념을 이용하나요?
빠른 시일내에 짤막한 칼럼하나 올려보도록 할게요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
교실벗어나자 울음보 터짐 진짜 존나 오열하다시피 울었음
-
설사뀨는 보아라 11
펑
-
쿠팡 보내줘 0
돈 벌어야 해...
-
04가 사수 0
4… 음
-
맞팔하실분 4
69명 빨리 채워야함
-
컴공 일기271 2
https://school.programmers.co.kr/learn/courses/...
-
지금있는친구로도 좋은데 새 친구 사귀는 모험을 왜 해야하지?라는 생각도 들구 날...
-
............. 씨발서성한은갈수있을까? 중경외시? 난 어디까지...
-
이거 2016년인가에 들었으니까 10년째 듣는 곡이네 ㄷㄷ
-
다시 돌아옴 1
ㅎㅇㅎㅇ
-
새르비니까 한번씩 적어보시죠 아침에 지울겁니다 저는 중학교때가 좀 후회되네요 그때...
-
메가패스지만 댓글에 따라 기꺼이 신택스 할 의향 있음
-
못봤대서 다시 12
ㅋ
-
스타일만 5
여름에
-
검색창엔 안 나오네…
-
친목으로 신고합니다
-
아까까지.계속 배아파서 못자다가 이제 자야겠네 빠잉
-
ㅇㅇ
-
잡시다
-
다이어트 1일차 0
시작합니다
-
살좀빼고 음 일단 자자 졸리네
-
내일이무섭구나
-
오노추 0
비트가 맛깔나요
-
지금 말고 사람 많은 오후 때요
-
나만 혼자 외롭게 있다는 생각들면 숨이 잘 안 쉬어짐
-
뭘해야할까
-
난 ㄹㅇ 잠이 안오더라 ㅋㅋㅋㅋㅋㅋ 울진않았지만 뭐,,
-
30명은 돌겄죠?
-
10키로 찌면서 이목구비에 살찜뇨.. 이제 마름에서 그냥 보통 정도 된거같은ㄷㅔ...
-
ㅇㅇ…..
-
자식때문도 있지만 자기자신을 위해서도 큰것같음 나라상태는 둘째치고 19-30까진...
-
오목 장기 체스 6
아무나 ㄱ
-
살면서 딱히 4
누구 닮았다는걸 못들어봄 들어보고 싶은대
-
재수 삼수실패해서 망하면 보통 다들 정시발표까지 뭐하시나요? 7
재수삼수실패햇는데 새벽까지 넷플릭스보는가 어케생각함?
-
아니 왜 아무도 6
ㅎㅇㅅ님 프사 뒤집고 로우플렛이라고 활동 안하는거지 언젠가 해보고싶긴 한데
-
일본인 같이 생겼다는 말 개많이 들음 곧 코 끝 수술할거라 동그란 이미지는 탈출
-
오르비나 하고있네ㅋㅋ
-
ㅇㅈ 바겐세일 6
그냥 잘나온 사진들 다뿌림 히히
-
근데 친구든 연애든 22
친구 만드는 것 혹은 연애하기에 지나치게 집착하면 오히려 생길 인연도 안 생기는 듯...
-
내일 아침에 일어나야하지 않나요?
-
아닌데?? 나한텐 오르비 친구들 있는데?? 나에겐 소중한 친구들임
-
햄부기 4
-
선택좀 2
경희대 정디플, 기계 디스플레이쪽 요즘 안좋다던데
-
이거 먹을려고 열심히 일 했어요
-
2시 쯤이면 ㅇㅈ해도 되려나
-
얼굴은 앵간만하는데 키크고 개잘먹게 생김...... 교복입고 엘베탔을때 어르신들한테...
-
ㅇㅈ 18
좋으니까 좋아요
으엉 환영합니다. ㅎㅎ
악플도 환영해영ㅋㅋ
이차방정식에서 근, 즉 x좌표의 값을 구하려면 근의공식을 이용할 수 있는데
근의공식에 루트안에 있는 비제곱 마이너스 4에이씨가 음수이면 실수가 아니니 결국 근이 없다!
그래서 x축과 만나는 점이 존재하지 않고 허공에 뜬상태로 그려진다!라고 이해하고 있는데
여기서 원하는 답은 아닌듯 ㅜ
제가 적어놓은걸 이용해서 수식으로 증명해보시면 좋을듯
잘 읽었어요~~
헝.... 이거 학생들이 더 생각하고 얘기할수있으면 좋은데
ㅠㅠㅠ 많은 의견 주셔요.. 생각이 기본임여러분
좋은 글 b
논술이 아니라 수능에서도 이런 사고방식이 필요할까요?
평가원에서는 이런 생각이 필요하다면 분명히 문제에서 다른 힌트를 줄 텐데;;
+) 밑 문제는 저같은경우 '원이면 무슨일이 있어도 중심을 써먹는다' 는 마인드를 갖고있어서
그걸 근거로 풀어낼 것 같습니다.
수능에서도 그런 사고과정이 필요합니다.
저건 원이 하나라서 그렇지 만약 원이 두개 나온다면, 그때는 어떻게 될까요?
어떤 중심을 써야할까요? 그리고 그 이유는 무엇일까요?
어떤 문제가 나와도 일관된 개념을 쓸수있나요? 그게 문제죠.
아니 저 ax2 이부분에서 수식으로 푸는 사고방식을 말씀드렸던거에요.
원의중심을 써먹는 문제에 대한 사고방식이 아니고요.
아래문제는 저같은경우
'벡터의 내적' 에서 정벡터와 크기가 일정하지 않은 동벡터의 내적인 경우
원의 중심을 이용해서 분해하여(원의 반지름은 크기가 고정되어 있으니까)
크기가 일정하지 않은 동벡터를 정벡터+크기가 일정한 동벡터로 교체한다는 마인드를 갖고 풀었었습니다.
넵. 맞습니다. 일단 크기와 이루는 각이 동시에 바뀌는 것을 포착합니다.
그 후, 어떻게하면 크기 혹은 각이 바뀌지 않을까를 고민하면 풀리죠
음.. 수능에서라기보다는 개념의 이해단계에서 필요하지 않을까 싶습니다.
우리는 판별식 D가 어떻게 되는지에 따라서 어떻게 된다..이런걸 외워요
실제로 판별식 D의 부호에 따라 어떻게 된다하고 케이스분류하고외우는게 수1에 있어요.
하지만 많이 외우면 그만큼 헷갈릴 확률도 높습니다.
최대한 간단한 언어로 이해하고 외워야한다고 봅니다.
역시 짱입니다!!
ㅇㅅㅇ.... 바로 찾아요 이러면ㅎㅎ
공부의양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다.
왜 이렇게 되는지 계속 생각하고 고민해보시면 좋은결과 있을거에요.
크 빨로해놀게용 전 이런 의문에 드는 깊은 이해가 좋드라고요
으어어엉.... 물어뜯어영..ㅋㅋ
크크크 저의 주특기가 기벡인데 ㄲㄲㄲ 원의 중심으로의 성분분해따위 필요없이 멀리 찍히는 바로 그곳이 우리가 원하는 점입니다.
언제나 중요한것은 그것이 어떤 개념을 이용해서 생각한 결과인지를 생각하는겁니다.
그것이 내적의 정의를 이용해서 설명 가능한가요?
네 제가 한 말이 내적의 정의를 깔끔하게 표현한 것이죠. 성분 분해는 벡터의 연산이 보이지 않을 때. 저 문항과 같이 너무나 눈에 쉽게 보이는 곳은 내려 찍으면 되죠. cos의 아름다움이 아닐까요.
결론은 직선 AD에 수직이며 원에 접하는 접선의 접점이 되겟네요(점 A에 가까운)
괜찮은 해석입니다. 다만 원의 중심으로 분해하는 것또한 내적으로 해석할 수 있습니다.
또한, 그 풀이는 꽤 괜찮지만 원이 두개 나온다던가 하면 되게 어려워질거에요.
좋은해석 감사합니다.
내적은 정사영으로 해석하는것이 복잡한 상황을 단순화하는데 많이 도움이 되던데요~~
그런데, 이문제에서는 움직이므로, 꽤 정사영을 많이 내려야할것같군요.
그렇다해도 좋은 생각입니다.
잘 읽었습니다 좋은글이네요
그 이차식을 표준형으로 변형해보니 첫째항은 실수제곱이므로 무조건0이상이고 둘째항은 4a(양수)분의 D(음수)
즉, 음수를 빼주는 것이므로
0이상인 수에 양수를 더해주는 꼴이라 무조건 양수이다 맞나요??
댓글로는 수식을 쓸 수가 없네욘
넵.
또한 그경우 그래프로도 해석이 가능합니다
쉬울테니 한번 해보셔요
제목이 이상하네요! 이차방정식이 0보다 크다니...?
칼럼내용이 개념을 엄밀하게 다루려는 것 같아서 용어에 살짝 태클걸고갑니다
ㅇㅇ 저도 그걸 발견했지..
하지만 어쩔수없다..ㅠㅠ 이거 언젠간 바꿀게요
아니 댓글이 계속 이상한데 달려요ㅋㅋㅋ 오류비 빡친다
아니 왜 본문에도이차방정식이라 적혔지..ㄷㄷ
여러분 이차함수의 함숫값으로 정정해주세요..
올해 9평 나형 등비급수문제요..
급수는 공비랑 초항 다 맞게 구했는데 아무리 계산해도 답이 안나왔는데요. 해설강의 보니깐 유리화 먼저 하고 계산하니 훨씬 깔끔하게 풀리더라고요. 급수문제에서 복잡한 루트식 있으면 님들은 어떤 방식으로 계산 진행하세요? 넓이 식이라 제곱해야된다는 가정하에요