[이동훈 기출] 한 평면에 포함되는 3개의 공간벡터 (공도회 심층분석)
이동훈기출_개념편_한 평면에 포함되는 3개의 공간벡터에 관하여.pdf
이동훈 기출문제집 atom 책 페이지
---
공도회로 알려진 수능 실전 이론에 대한 분석입니다.
이동훈 기출문제집의 부교재(무료PDF)로 제공되는
42개의 수능 실전 이론 중에서 마지막 주제에 해당합니다.
나머지 41개의 주제들은 7월 초 ~ 8월 말에 걸쳐서
이동훈 기출문제집 atom 책 페이지를 통하여
꾸준하게 제공될 예정입니다.
( -> http://atom.ac/books/3888/ )
---
공도회를 소재로 하는 문제는
평면의 결정조건 + 각의 크기의 최대최소
로 접근하는 정형화된 풀이가 존재합니다.
(사실 모든 수능 문제의 풀이는 공식화되어 있는 것으로 봐야겠지요.
교과서에 바탕한 전형적인 풀이를 적용하면 항상 풀리게 출제되니까요.)
일차결합의 관점에서 공도회를 해석하면
벡터의 정의, 연산부터 내적까지,
전 과정을 이용할 수 밖에 없으므로, 공도벡을 통합적으로
학습할 좋은 기회가 됩니다.
(만약 벡터가 평면의 법선벡터로 주어지면 평면의 방정식까지
포함하게 됩니다.)
사실상 공식화 된 이론으로 문제를 빠르게 해결하는 것도 중요하지만,
그 이론의 증명과정에 대한 이해와 연습도
수능 학습에 반드시 필요하다고 생각합니다.
실전에서 어떤 상황이 닥쳐도 헤쳐나갈 수 있는 힘을 키워야 하니까요.
이동훈 기출문제집에 수록된 모든 공도회 관련 문항의 해설은
위의 이론에 기반하여 작성되었습니다.
공도회에 대한 해석이 타 기출문제집과의 가장 큰 차이점이고,
위의 설명을 낯설고 어렵게 생각하는 분들도
적지 않은 것으로 알고 있습니다만,
사실 위의 이론을 알아두면 벡터의 내적 전반에 대한
이해의 폭을 넓힐 수 있습니다.
제가 기출문제집의 이론편을 만드는 이유는
이동훈 기출문제집의 해설이 어떤 통일된 관점과 이론에 바탕하여
작성되었는가를 보여드리기 위함입니다.
장기간에 걸친 수능/평가원 기출 해설 작업을 통해서
축적된 생각들을 체계적으로 보여드리고 싶은 욕심도 있습니다.
올해 여름에 무료 공개되는 42개의 실전 개념은 개정 과정을 거쳐서
2019 이동훈 기출문제집에 수록될 예정입니다.
학습에 도움이 되길 바랍니다.
감사합니다~ :)
+ 참고로 42개의 주제는 다음과 같습니다.
(01) 수학2(함수) 유리함수, 무리함수와 격자점
(02) 수학2(수열) 등차등비수열의 전형적인 문제 (+등차중앙, 등비중앙)
(03) 수학2(수열) 합에서 일반항 유도하기
(04) 수학2(수열) 수학적 귀납법으로 증명하기
(05) 수학2(수열) 발견적 추론 (수를 나열한다.)
(06) 미적분1(수열의 극한) 수열의 극한과 급수의 계산
(07) 미적분1(수열의 극한) 등비급수와 중등기하
(08) 미적분1(함수의 극한과 연속) 함수의 연속에 대한 전형적인 응용문제
(09) 미적분1(함수의 극한과 연속) 사이값 정리의 활용
(10) 미적분1(다항함수의 미분법) 미분계수와 도함수의 다양한 문제들
(11) 미적분1(다항함수의 미분법) 접선의 방정식 (+최단거리)
(12) 미적분1(다항함수의 미분법) 평균값 정리의 활용
(13) 미적분1(다항함수의 미분법) 3차, 4차 함수의 그래프 (+인수정리)
(14) 미적분1(다항함수의 미분법) 미분가능성 (+절댓값)
(15) 미적분1(다항함수의 미분법) 미분법의 방정식, 부등식에의 활용 (문과)
(16) 미적분1(다항함수의 적분법) 구분구적법을 정적분으로
(17) 미적분1(다항함수의 적분법) 적분과 미분의관계, 미적분의 기본정리에 대한 전형적인 응용문제
(18) 미적분2(지수함수와 로그함수) 지수로그함수의 수학1 내적 연관
(19) 미적분2(지수함수와 로그함수) 삼각함수의 수학1 내적 연관
(20) 미적분2(삼각함수) 삼각함수, 지수로그함수의 극한과 중등기하
(21) 미적분2(미분법) 역함수의 미분법 총정리
(22) 미적분2(미분법) 사이값 정리, 평균값 정리의 활용
(23) 미적분2(미분법) 합성함수의 연속성과 미분가능성
(24) 미적분2(미분법) 접선의 방정식 (+변곡점, 점근선의 관점)
(25) 미적분2(미분법) 초월함수 그래프 (+빠르게 그리는 방법)
(26) 미적분2(미분법) 이계도함수에 대하여 (+함수의 볼록성)
(27) 미적분2(미분법) 미분법의 방정식, 부등식에의 활용 (이과)
(28) 미적분2(적분법) 치환적분법, 부분적분법의 전형적인 응용문제
(29) 확률과 통계(순열과 조합) 합의법칙, 곱의법칙 (+수형도)
(30) 확률과 통계(순열과 조합) 조합, 중복조합, 순열, 중복순열에 대하여
(31) 확률과 통계(확률) 확률의 계산 (+밴다이어그램)
(32) 확률과 통계(확률) 확률의 전형적인 응용문제 (+개념정립)
(33) 기하와 벡터(이차곡선) 이차곡선의 정의와 중등기하
(34) 기하와 벡터(이차곡선) 교과서에는 없는 이차곡선의 성질
(35) 기하와 벡터(평면벡터) 벡터의 일차결합 (+개념정립)
(36) 기하와 벡터(평면벡터) 벡터 내적의 최대최소 (+상수변수)
(37) 기하와 벡터(공간도형) 공간도형을 관찰하는 법 (단면화, 정사영, 전개도)
(38) 기하와 벡터(공간도형) 공간도형 개념정립
(39) 기하와 벡터(공간벡터) 좌표공간 개념정립
(40) 기하와 벡터(공간벡터) 공간에서의 직선, 평면, 구의 방정식 (+위치관계)
(41) 기하와 벡터(공간벡터) 두 평면이 이루는 각의 크기를 구하는 3가지의 방법
(42) 기하와 벡터(공간벡터) 한 평면에 포함되는 3개의 공간벡터에 관하여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그나마 공부하면 3아래는 안 가는 사탐은 뭘까요? (=4등급으로 훅 가진...
-
연고대 가면 더 놀게된다는데 연고대 다니시는 분들 분위기 어떤것같나요?
-
다 여르비임뇨? 12
나만 여르비가 아녓구나..다행이뇨
-
눈오네 0
-
다시 수험생이 된 거 같아용
-
예비고2 탐구 0
정시 메디컬 서연고서성한 희망합니다 현역에 붙어야합니다 생지할까요 사탐할까요
-
1. 대학수학이나 물리 등 연관 베이스가 좀 있다면, 현행 교육과정 기하를 접해본...
-
휴대폰 화면에 뽀뽀를 하는건 썩 기분이 좋지 않네 10
그치만 여붕이들이 인증을 올리는걸 어떡해
-
일단 청바지 재탕하고 대충 후드티 입어야지
-
테슬라야아..
-
나도좀껴줘ㅠㅠㅠ
-
기분전환용 취미 4
오디오 인터페이스랑 마이크 하나 싼걸로 사서 기타랑 연결하고 미디 작곡 시작할 예정...
-
지방러인데 주변 동창들보면 카이스트 고대 연대는 좀 있는데 서울대는 아예 한명도...
-
대학 고민이요 0
현06 일반고 내신 3.4입니다 과기대 기계 충대 기계 떨어지고 수시 명지 전자...
-
공부잘하고싶다 1
쩝...
-
삼수 돈 모으려 하는데ㅜ 알바 경험이 없어서 안구해지네요ㅜ
-
하..그냥 소장용으로 하나 사야겠다
-
중학교내신은 예체능기가정보등 버린과목이랑 수행 다 포함해서 146명중에 23등이고...
-
플스는 거지라 못사고 pc는 뭔 요구사양이 안드로메다로 가버려서 불가능...
-
생1 유전땸에 3떠서 사문으로 도망칠려는데요 1. 서성한 공대 노리는거면 사탐런...
-
SKYSSHCKHS - 3 +- 0.5 메디컬 3.5 +- 0.5 대치동 및 강남8학군 +0.5
-
공통만점이긴한데…
-
입이 근질근질한데 돈이 읎어서ㅋㅋ어우 대충 그렇습니다 사생활이긴한데 밤에 바쁘게...
-
수능 끝나고 완주한 게임이 파크라이5 하나밖에 음슴 4
하루종일 컴퓨터 앞에 앉아있진 않았어도 꽤 많이 했는데 거의 대부분 깔았다 지웠다...
-
대학교 공통수학 범위가 고등학교로 내려오면 수능이 이런 느낌이겠다 싶음 솔직히......
-
잡내는 나는데 누린내는 나면 안됨 정구지는 양념 되어있어야하고 소면도 줘야함 김치랑...
-
문과미적이임 공통 12월까지 시발점+쎈 삼회독 (+노제도형노베공수간단히) 끝나면...
-
나빼고 다들 먼가 뒤에서 친한 것 같음
-
외로워뇨 8
진짜 진심임뇨
-
개빡치네 2
뻥임뇨
-
대학 가본적이 한번도 없음
-
츄베릅
-
하 개떨리네
-
국어 백분위 96 고정 vs 수학 백분위 98 고정 28
이럼 어떰
-
고딩 때는 많았는데 슬퍼
-
다들 잘자시게 8
-
25수능 독서 지문 및 문항 해설+엮어읽기, 앞으로의 학습 방향 2025 국수영탐...
-
님드라 이거 보고가 14
당신은 따봉 전기쥐의 가호를 받았습니다 그로인해 원서영역이 대박날 것입니다
-
406.3인데 cc임..
-
현역 물리 밀려쓰고 지거국가서 학고반수함 국어는 2등급에서 3등급 왔다갔다하는성적...
-
주무십쇼 2
오늘 할 거 다 함
-
풍산자 괜찮나요? 서술이 가장 자세해 보이던데
-
미야오 안나 7
-
벌써 16레벨을 앞두고 있구나....
-
혀누진..? 3
이건 그냥 영상만 활용한다는 걸까요?
-
내려가기도 했군여
오래 기다리신 만큼 완성도 높은 원고로 보답하겠습니다. 감사합니다~ ^^
기출문제집 매우 잘 보고있습니다
이 책들을 산 후로 비로소 수학공부를 제대로 하고 있다는 느낌을 받았어요
감사합니다. 공부하시면서 의문이 드는 점이 있다면 언제든지 문의하여주세요. 더 좋은 책을 만들기 위하여 노력하겠습니다. ^^~
문제집 잘 쓰고 있어요. 좋은 자료들 감사합니다
더 좋은 책을 만들기 위하여 노력하겠습니다.
내용 너무 좋습니다^^