[박주혁T] [2020ver.] 미적분 공부,제대로 하고있나요?
안녕하세요? 오르비 클래스의 수학강사 박주혁입니다.
수학관련 칼럼은 괜찮은 글이 진짜 안올라오네요ㅋ
국어만 계속 올라오고요^^
그리고 1월의 매우 바빴던 윈터가 끝나고,
1월에 상담하면서 느꼈던 바를 오늘 글에 반영하여
이번에도 미적분1 관련 글을 써보려고 합니다.
우선 아래 칼럼은 이 글을 읽기 전에 한번쯤
보시면 좋은 글입니다.
(생각해보니 매년 초에 미적1 관련 글을 썼네요)
================================
[2018ver.] 미적분1, 안할거니?
https://orbi.kr/00010595728
[2019ver.] 미적분공부, 잘하고 있습니까?
https://orbi.kr/00016124505
================================
오늘은, 미적분1에서의 "함수의 극한"에 관련된 글입니다.
우선 기출문제를 하나 보죠.
정답은 믿고 찍.....
제발 이런거 찍기말고 풀어봅시다.
암산이 됩니다. 5번이지요.
그리고 함수의 극한의 가장 기본과정인,
무한대로 갈때는 최고차항 관찰 / 0으로 갈때는 최저차항 관찰
인 거죠 뭐. 별거 없습니다.
(강사들이 심화개념이라고 하는게 사실 별거 없듯이 말이죠)
그럼 이번엔 이 이야기를 하겠습니다.
====================================
아래 문제의 상수 p 의 값을 예측해 봅시다.
(단, f(x) 는 최고차항의 계수가 1인 4차함수 )
====================================
금방들 하시죠?
f(x)= x4 + ax3 + bx2 + cx + d 라고 하면, 금방 답이 나옵니다.
이해가 금방 되시죠?
(x가 0으로 가니까 최저차항을 관찰한다면 나오는 거니까요)
그럼 이 문제도 금방 하실수 있습니다.
===========================================
===========================================
그렇죠, x-1=t 로 바꾸면
이렇게 바뀌니까, 위의 문제와 같은 구조라서
(바로 이해 안가시면 다시 위의 구조를 보세요)
s=t=q=0 , f (t+1) = t3(t+p) , p≠0
즉 f(x) = (x-1)3 (x+p-1) , p≠0 인 거죠.
그럼, 이제 진짜 훈련 문제를 풀어보겠습니다.
문과는 (1)번만, 이과는 (1),(2)번을 모두 풀어보시면 됩니다.
======================================
(1) 문/이과 모두용
(2) 이과용 (2018 6월 평가원 21번)
======================================
어때요? 답이 둘다 똑같이 나오지 않습니까?
(아랫줄 드래그 해보시면 나옵니다)
(답은 51, 4번이 답입니다.)
두 문제 모두 동일한 "미적분1 - 함수의 극한" 개념을 사용하고 있습니다.
교과서 개념의 중요성 뿐만 아니라, 미적분1이 이과에도,
여전히 매우매우매우 중요하다는
이야기를 하고 싶었습니다.
---------------------
지금은 시간이 없는 관계로,
두 문제의 해설과
나머지 하고 싶은 이야기는
오후에 마저 작성하도록 하겠습니다.
-------------------------------------
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
참 슬퍼
-
기차지나간당 1
부지런행
-
7시에 잇올 가야하는데 얼어디지게 생겼네....
-
얼부기온앤온 6
-
ㅇㅂㄱ 3
하이룽
-
특정안당할려고 이악물고 대학 이름 말안했는데 결국 당했네 난 순수한 사람이야 。◕‿◕。
-
믿습니다 티웨이 0
눈보라 때문에 비행기 안뜰까 걱정하고 있었는데 이걸 보내주네 ㅋㅋㅋㅋㅋㅋ
-
이제 자야겠다 0
잠깐 눈만 붙이고 과외하러 가야지..
-
얼버기 3
응..
-
기차지나간당 2
부지런행
-
만약 과제로 수특 변형문항이 제공되었을때, 어느정도 난이도와 변형정도를 원하시나요?...
-
알바 문의 문자로 했는데 한달만에 답장이 왔네용 근데 제가 알바 꼭 해야 하긴...
-
얼버기 1
안녕하세요
-
도로에서 잠자는 것 같아요
-
겁나 mz한 발암캐가 생겨서 하차했어요 중독수준으로 보고 있었는데 이건 좋은건가..
-
가난이 군대같이 오리라
-
진로고민만 하다가 일단 공부 시작하니까 행복해요 근데 이제 시간이 잘 시간이ㅡ아니라...
-
대전 근교 살아서 대전에서 재수해야됨 기숙은 작년에 윈터썸머 갔다왔는데 정신병만...
-
방금닦은곳 다시 발자국생김ㅋㅋㅋㅋㅋㅋ ㅌㅋㅋㅋㅋㅋ
-
큐브에서 수시,정시 관련 상담 해주실 선생님 계실까요..?ㅠㅠ혼자 공부하는데...
-
자자 0
-
기균 나군 2명 뽑음 (얼마전에 올렸는데 데이터 추가해서 다시 조사합니다 불안하기도...
-
외롭기 때문에 공부해야하고 대학교 가면 다 좋아질까 동아리 활동이던 과 생활이던 다...
-
지방수 갈 수도 있을거 같아서 기숙사 드가기 전에 미리 사려는데 어떤게 좋을까용.?...
-
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
국숭세단 위로 건대 동국대 빼고 없는 거 맞나요??
-
김기현 아이디어 0
현역 이과 고3이고 수학 2-3 정도 뜨면 좋겠는데 내신이 확통이고 다른 것도...
-
봇이지뭐 4
즐기지뭐
-
보면 대단하다는 생각듬 나는 아침 일찍 일어나는것도 어렵던데...
-
진짜 자러감 3
-
아몰라사문시작!
-
여기에서 + 표시 눌렀더니 이렇게 뜨기만 하는데 원래 본인 학교 강의들 다 뜨지...
-
조만간 이 생활도 그리워지겟지
-
서버나아졋나? 0
인원다빠져서정상화된거처럼보이는건가
-
왜 여기서..? 하는거임..?
-
공통+선택을 그냥 한 권으로 묶으면 보통 몇권정도 푸나요? N티켓 빅포텐 펀더멘탈...
-
우흐흐
-
비추ㄴㄴㄴㄴㄴㄴ
-
자루갑니다
-
굿나잇
-
아무도 없군 3
이제부터 여기는
-
단톡 초대됐네 0
이제 뭔가 실감이 난다
-
끝없이 우울해 2
딱히 힘든 일은 없어 후회되는 일도 없어 남눈치만 보고 살았어 과거로 돌아가고 싶어...
-
개발자아 4
-
나만 이럼? 1
이번에 미적 백분위98 받았는데 수능 끝나고 지금까지 수학문제 하나도 안보다가 어제...
-
새벽 노래 추천 4
최성 화이트데이 데모 창모 pure rage
-
자야겟다 1
서버 너무 느려
-
렉 못 버티겠다 7
오르비 안녕 다른 거 하러 감
-
새벽 노래 추천 4
근데 이제 나이트코어 버전에 영어 버전인 저는 이걸로 처음 접했어요
-
이과 예비고3입니다. 2학년 때 화생을 했었는데 수능선택과목으로는 생명/사문 생각...
와 저거 암산 안되는 저는... 펜을 집어야하는 ㅜㅜ
아니 뭐... 2009 수능문제야 너무 오래전것이기도 하고,
유명한 문제니까 '암산'이 되는거라고 쓴 거에요ㅜ
이런 고퀄 칼럼에 왜 댓글이 안달리지?