똑똑하게 공부합시다. (약스압)
허구헌날 홍보만 하던 자낳괴램에서 (ㅎㅎ...)
어떻게든 수험생들한테 도움 주고 유명해져 보겠다고 열심히 칼럼쓰던 피램으로 돌아왔습니다.
오늘은 국어뿐 아니라 전반적인 공부에 대해 이야기해보고자 합니다.
꽤 길지만, 시간 내서 정독하면 자그마한 도움이라도 얻을 수 있을 것이라고 생각해요! 열심히 읽고 좋아요 댓글 부탁드립니다...ㅎㅎ
사실 제가 뭐 '공부의 신'이라는 칭호 붙여가면서 떠들 성적은 절대 아닙니다.
진심 제 수험생 시절은 냉정하게 오르비식, 포만한식 노베라고 봐도 될 정도...
일단 기본적으로 저는 공부를 미친듯이 열심히 하는 스타일이 아니었습니다.
물론 처음 재수 시작할 때 두 달 정도는 진짜 열심히 했어요. 일요일은 칼 같이 쉬었지만,
월~토 하루 12~3시간씩은 우습게 찍으면서 열심히 공부했죠.
그런데 이렇게 열심히 공부하던 시기보다, 하루 8시간 정도씩 적당히 공부하며 1년을 유지했던 삼수 시절에
훨씬 실력이 더 많이 오른 것 같다는 생각이 듭니다.
왜? 처음 재수를 할 때와 다르게 삼수 시절 저는 꽤나 '똑똑하게' 공부했거든요.
진심으로 여기에 노력을 더 얹었다면 서울대도 쉽게 가지 않았을까... 하는 무의미한 가정을 할 정도로 말이죠.
따라서 이 글을 읽으시는 여러분은 지금 기울이시는 노력에
제가 말씀드리는 '똑똑한 공부'를 얹어서, 정말 좋은 결과로 수험판을 뜨셨으면 좋겠습니다.
아니 그래서 '똑똑한 공부'가 뭐냐구요?
일단 가장 중요한 건, 우리의 공부 목적이 '좋은 점수'를 받는 데 있다는 걸 인식하는 겁니다.
'좋은 점수'를 얻기 위해선 수능이 요구하는 '생각의 틀'을 갖춰야 하고, 수능이 요구하는 '생각의 틀'을 갖추기 위해선 내가 가지고 있는 '생각의 틀'을 벗어나야 한다는 것이죠.
이런 점에서, 무식하게 12~3시간 동안 인강만 듣고 문제만 풀던 저의 재수 생활은 아주 멍청한 공부의 시기라고 할 수가 있습니다. 그냥 인강쌤이 시키는대로 문제만 풀면 점수가 오를 거라고 생각했는데, 그게 아니었어요.
그냥 인강쌤들이 가지고 있는 '생각의 틀'을 구경만 하고, 내것으로 만들려는 노력을 기울이지 않았다는 것이죠.
예를 들어 봅시다. 비문학 인강에서 비례 관계가 나오면 주목해야 한다고 했습니다. 오 뭔가 대단한 걸 배운 것 같습니다. 열심히 필기하고, 앞으론 비례 관계에 주목해야 겠다고 다짐합니다. 뭐 기출 풀 때 비례 관계가 보이면 메모해보기도 하죠. 대부분의 학생들이 여기서 끝냅니다. 그리고 수능 시험장 가면, 막상 비례 관계에 주목 안 합니다.
왜일까요? 비례 관계가 중요하다는 '생각의 틀'을 내것으로 만들지 못했기 때문입니다.
그러니까, 그게 중요하다는 걸 스스로의 마음 속 깊이 이해하지 못했기 때문입니다.
무언갈 배운 뒤에는 반드시 생각해야 합니다. "왜 평가원은 비례 관계를 중요하게 출제할까?"
이에 대한 답은 여러 가지가 있을 겁니다. 저는 보통 "평가원은 논리적인 학생을 뽑고 싶어하기에, 논리적 관계에 해당하는 비례 관계를 잘 잡고 있는지를 물어본다."고 합니다만, 뭐 다른 생각을 가지고 계실 수도 있겠죠.
어찌 되었든 중요한 건, 이렇게 '내것'으로 만드는 과정이 아주 중요하다는 겁니다. 평가원이 이 부분을 강조할 수밖에 없다는 걸 '인강'이 아니라 '내 마음속'에서 느끼면 앞으로 공부할 때도, 수능 시험장에서도 비례 관계는 두 눈 부릅뜨고 체크할 수밖에 없다는 거죠.
또 다른 예를 수학으로 들어 봅시다. 제가 반 수포자 시절, 지수함수를 배우면서 아래와 같은 문제를 봤습니다.
함수 f(x)=4^x + 4^-x + 2(2^x + 2^-x) + 5 의 최솟값을 구하여라.
이 문제를 처음 풀 때, 저는 총 3번의 멘붕이 왔습니다.
1) 뭐 어떻게 하라는 거지?
-> 저 상태로는 도저히 뭘 할 수가 없어 보였습니다. 괜히 지수함수 배웠다고 y=2^x, y=2^-x 그래프 그려보고... 합쳐보고... 이상한 짓을 하다가 막막해져서 답지를 슬쩍 봤습니다. 그랬더니
2^x + 2^-x = t (t>0)으로 치환하자.
라는 말이 보였습니다. 여기서 유레카!를 외친 뒤에 답지를 덮고 't^2 + 2t + 3'이라는 새로운 함수를 만들었습니다. 그런데...
2) 저 함수의 최솟값이 뭐지?
-> 그래도 수학의 정석에서 '호랑이는 죽어서 가죽을 남기고, 치환한 문자는 범위를 남긴다.'라는 말을 봤던 기억은 있어서, t가 0보다 크다는 것 정도는 알았습니다.
그런데 문제는, 만약 t의 범위가 실수 전체라면, 위의 't^2 + 2t + 3'이라는 이차함수의 최솟값은 t=-1일 때 '2'로 나타납니다. 하지만 t는 양수라는 단서가 달려 있습니다. 오잉? 그러면 최솟값은 없는 것 아닌가요... 막막한 상태에서 반 포기 상태로 역시 또 답지를 봤더니
산술기하평균에 의해 2^x + 2^-x >= 2이므로 ~
라고 합니다. 그니까 t는 2 이상의 값이므로, t가 2일 때의 값이 최솟값이었던 것이죠!
3) 아니 이걸 어떻게 떠올리냐...
-> 저는 큰 충격을 받았습니다. 그래 치환까지는 납득이 되는데, 갑자기 고1때 배운 산술기하평균이라니요... 뭔가 수학은 진짜 해도 안 되는 과목인 것만 같고, 시험장에서 이런 걸 떠올릴 수나 있는 걸까 하는 생각이 들었습니다. 진심으로 수학을 포기하고 싶다는 생각이 들 정도로 말이죠.
그래도 뭐... 일단 배웠으니 정리는 했습니다. 풀이를 정리하고, 비슷한 문제가 나오면 이렇게 풀어야겠다... 하면서 말이죠.
대부분의 학생들이 여기서 멈춥니다. 지금 수학 좀 하는 학생들은 '뭐 저런 문제에서 막히누.. ㅈ밥 ㅉㅉ'라고 생각하시겠지만, 여러분도 막히는 킬러 문제에서는 위와 같은 과정을 똑같이 겪을 겁니다. 도대체 이걸 어떻게 떠올리지... 하는 느낌 말이죠!
아무튼 이렇게 첫번째, 두번째 수능을 보며 거하게 말아먹고, 삼수를 시작하던 시점 쯤 위와 비슷한 문제를 다시 만나게 됩니다.
이런 문제를 몇 년간 본 적 없다가 갑자기 마주치니, 또 머릿속이 하얘지더라구요. 분명히 고등학생 때 봤던 것 같은데, 어떻게 푸는지는 기억이 안 났습니다. 당연하죠! 위의 풀이는 저 문제집을 쓴 사람의 '생각의 틀'이었고, 저는 그걸 그냥 받아 적기만 했으니 잊는 것이 당연한 거죠.
그렇게 똑같이 답지 보고 위의 과정을 밟던 찰나... 갑자기 위의 '3) 아니 이걸 어떻게 떠올리냐...'가 한탄에서 '물음'으로 바뀌었습니다. 진짜 궁금해지더라구요. 여기서 왜 갑자기 치환을 하고, 산술기하평균을 떠올려야 하는지 말이죠.
그래서 치환을 해야하는 문제들을 싹 찾아서 풀어보고, 산술기하평균 파트 교과서를 다시 읽어보고 관련 문제를 쭉 풀어보았습니다. 저 물음에 대한 답을 찾기 위해서 말이죠.
그랬더니 나름의 답이 나왔습니다.
'치환은 복잡한 상황을 단순하게 만들기 위해서 하는 것이구나!'
'산술기하평균은 결국 두 양수의 합의 최솟값, 곱의 최댓값을 구할 때 쓰는 것이구나!'
이 생각을 하고 나니, 대부분의 수포자들이 어려워하는 '치환', '산술기하평균'을 자유자재로 사용할 수 있게 되었습니다. 이들을 왜 배우는지, 언제 써먹어야 하는지를 알아서 완벽한 저만의 '생각의 틀'로 만든 덕분이죠.
이후로는 수학 문제를 풀 때마다 위의 과정을 거쳤고, 그래도 수학 6등급 받던 수포자에서 나름 96점 받는 실력까지 오를 수 있게 되었습니다. (100점은 진짜 존경....) 아 수학이 아니라 산수라고 해야 하나요?
아무튼! ㅎㅎ 이제는 이런 공부를 다른 과목에서도 하기 시작했습니다. 특히 국어에서 이 과정이 큰 도움이 되었죠.
문제를 풀 때, '왜' 3번이 답인지가 아니라 '어떻게' 해야 3번을 답으로 고를 수 있는지를 고민하기 시작한 겁니다. 당연히 성적은 쭉쭉 올랐죠. 별로 공부를 열심히 한 것도 아니었는데 말이에요. 나의 '생각의 틀'이 평가원이 요구하는 '생각의 틀'에 맞춰지고 있기 때문인 거예요!
그러다가 대학에 가고, 2017학년도 수능 국어영역 문제를 풀게 됩니다. 여기서 이런 문제가 등장해요.
당시 정답률 20%대를 기록한, 꽤나 어려운 문제였죠.
이 문제를 풀 때, 저는 저도 모르게 표를 그리고 '보험금'을 100으로 둬야 겠다는 생각을 합니다. 처음 풀 때 말이죠!
어떻게 그럴 수 있었을까요? 저는 수학에서 '치환'을 복잡한 상황에서 사용한다는 '생각의 틀'을 가지고 있었습니다.
그런데 위의 와 선지를 보면, 사고 발생 확률, 보험료, 보험금, 기댓값, 보험료율 등 엄청나게 다양한 상황을 다뤄야 합니다.
여기서 본능적으로 이 상황을 단순화시키고 싶다는 생각이 든 겁니다. '치환'과 엄밀하게 보면 같은 원리는 아니지만 말이죠.
그래서 여러 정보를 한 눈에 볼 수 있도록 표를 그려야겠다는 생각, 계산을 '단순'하게 만들기 위해 보험금을 100으로 둬야겠다는 생각을 한 거죠.
실제로 이를 통해 위 문제를 아주 쉽게 해결했고, 그 해설 그대로 "P.I.R.A.M 국어"에 실어두었습니다. (혼틈 광고... ㅎㅎ 버릴 수 없는 자낳괴램 본능)
뭐 핵심은 이겁니다. 똑똑하게 공부하자. 어떻게? 내가 가지고 있는 '생각의 틀'을 평가원이 요구하는 '생각의 틀'에 맞추면서!
이렇게 말하면 너무 어렵고, 한 마디로 무언갈 배우면 이걸 도대체 왜 배우는지, 어떤 상황에서 사용하는지, 그래서 나는 어떤 식으로 생각해야 이 문제를 풀 수 있는지를 고민하면서 공부하라는 겁니다.
나아가 여러분이 미친듯이 푸시는 사설 문제집, 실모 같은 걸 푸실 때도 계속 생각하셔야 합니다. 나는 이걸 왜 푸는지, 어떻게 공부해야 하는지!
'생각'이 결여된 공부는 아무리 많이 해도 큰 효과가 없습니다.
반면, '생각'하며 하는 공부는 조금만 해도 그 효과가 아주 큽니다.
여러분은 '생각'하며 아주 똑똑하게 공부하는 수험생이 되도록 합시다!
약간 추상적일 수는 있지만, 위에 제가 들어드린 예시를 토대로 완벽하게 이해하려고 해보세요.
공부는 똑똑하게 해야 합니다!!!
0 XDK (+60)
-
50
-
10
-
네
-
ㅋㅋㅋㅋㅋㅋㅋ
-
국립대 5명 뽑는 관데 처음부터 계속 7칸이긴 한데 ㅠㅠ 실제에선 44명중에...
-
나 아는 엄마친구분은 서울에서 돈이 안돼가지고 지방내려와서 병원하는데 여기가...
-
의대가면 의사로가는 비중이 많을까 아님 의과학자로 가는 비율이많을까.. 본인이...
-
분위기가 안 좋네 사려야겠군
-
시간 ㅈㄴ없을거같은데 과탐절대못할거같다
-
게슈탈트 붕괴랄까..?
-
지금 7차까지 떴던데 아직도 못붙었으면 끝이라고 보면 될까요? 아님 뒤에 더 있을까요?
-
재고 없을 수도 있음뇨? 당연히 있을 줄 알고 가는 중인데 인터넷으로 재고...
-
으하하
-
하필 의대생 전공의들 할 거 없어서 의사커뮤 가입자 올 한해에만 3만명 가까이...
-
근데 댓글 보면 친목질 하느라 점점 말투랑 내용이 역겨워져 가는 건 팩트잖아…
-
어째 내글에 애니프사처달고 발끈하는새끼들은 전부다 쓴글목록만보면 물리학처하고있네...
-
성균관대 자연과학계열 ㄱㄴ인가요?? 전화추합이라도 ㅠㅠ
-
2022년 01월부터 시작해서 현재까지 총 5명의 장학생이 배출되었습니다. 내년에도...
-
한명도 안돌아도 이상할거 없는 학과인데
-
아무도 모르겠지만 안녕히계세요
-
찾아보셈
-
오버슈팅 지문에서 문제는 풀리는데 30분째 지문에 이해가 안되는 부분들이 있어서...
-
임마 이거 뭐임 3
이 성적으로 여길 왜씀
-
진짜 몰라서 그럼. 왜 욕먹고 왜 의대가면 조진거임? 뭐 니똥샤?같은 댓 달고 다닌...
-
옵션이 학교 자습실이랑 스카 두개인데 학교 자습실-분위기도 괜찮고 개인적으로 집중...
-
숨막혀...
-
저녁여캐투척 4
음역시귀엽군
-
지금 서연고 문과 다 텅텅인데 이쯤 되면 그냥 들어올 표본 다 들어온 거 아닌가요?...
-
표현의자유고 좆까고 전부다 뽕알하나씩달린 남정네새끼들이 ~~님은 귀여우시잖아요 흐흫...
-
https://orbi.kr/00070821451
-
포물선 문제를 풀고 있어여>< 개념은 쉽고 공식 왕창이지만 이렇게 풀면 재미가...
-
올수 지구과학 3떠서 1월부터 개념 인강 들을건데 둘 중 누가 나을지 추천 해주세요...
-
남자긴한데…. 학벌은 나쁘지않을듯 3떨아닌이상
-
23수능 백분위 83 24미응시 25수능 백분위 86 화작임 만년 3따리라 슬프네요
-
세월호 참사 최순실 국정농단 이태원 참사 코로나19 N번방 사건 동덕여대 폭동...
-
의까엿어요? 아니었을텐데... 애초에 본인이 의대 갔는데 웬 의까
-
인터넷 실명제 7
드가자
-
의사는 공대느낌이고 의과학자는 자연과학 같은 느낌임??
-
몇년전까지 떡상하다 전기차 시장이 안좋아져서 올해는 망한걸로 아는데 앞으로도 쭉 안좋아질까요?
-
1월 말부터 공부할 생각이고 시대 재수/반수반 등록할 생각도 있어요 (의대...
-
컴공 일기257 4
임시객체 Copy이슈로 오는 비효율을 Move semantics로 해결하곤 합니다....
-
8칸 연초 4
진학사로는 8칸인데 고속은 연초… 왜이럴까요
-
아직도 미필이네 나는
-
자전 401 상경 397 인문 394 사범 391
-
원금 + 오천덕 드림 1등 제외 환불 불가에요 7시 20분까지용
-
불연속그래프... 앞에4명방빼주세요
-
스나 갈긴다.
-
플레이 왜 저럼 9
왜 또 플레이가 씹창난겨
-
미쳤다 ㄹㅇ 부상 나으면 유산소도 다시 ㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱ
-
인식이 안되는 외장하드를 집에서 혼자고칠수는 없나요??? 0
업체에 보내지 않고 혼자서 고칠수는 없나요???
ㅇㅈ
선추후독
제가 해오던 생각이네요 ㅎㅎ 기분이 좋습ㄴ다
공부하면서 왜 라는 질문을 많이 해야겠네요
맞습니다!!
전반적으로 공부를할때,
생각을하면서 자신의 태도를 고쳐나가는건데
무작정 양으로만승부하면 망하는거죠..
그래서 열심히하지말고 잘해야하는건가봐요.
정확히는 잘, 그리고 열심히 해야죠! ㅎㅎ
너무 도움되는 글인것 같아요 이글 참고하면서
최대한 똑똑하게 공부하려고 노력해볼게요
피램개념편 예약구매 했는데 빨리 받아보고 싶네요ㅎ
넵 ㅎㅎㅎ 기대해주시면 감사하겠습니다.
어떻게 하면 이렇게 생각할 수 있지?
내가 어떤 능력이 부족한걸까
앞으로 고민하겠읍니다.
화이팅입니다!!!
ㅆㅇㅈ 이거 피램 풀면서 느끼고 국어 떡상했습니다 ㅋㅋㅋㅋ
역시 에피갓...
피램!피램!피램!피램!
공부는 어떻게라는 생각이 들땐 지쳐서 잠을 자는ㅠㅠ
아 수학 진짜 공감하고 갑니다
아 ㅋㅋ 이문제 칼럼 제대로 쓰실줄알고 쫄았네요.. 이거 눈여겨보고 있었는데
ㅋㅋㅋ화이팅입니다
와 좋은 글 감사합니다 짧은 글인데도 많은 걸 깨닫게 되네요
다행입니다! 그 깨달음 그대로 화이팅 :)
ㅇㄷ
와 이런 글 쓰기가 가장 어려운데... 좋은 글 감사합니다.
감사합니다 :)
피램할때 실력 안는 이유를 알겠네요 ㅋㅋㅋ
문제만 풀고 아~ 그러시구나 하고 휙 넘어갔음..
ㅜㅜㅜ
산술기하 쌉공감ㅋㅋㅋ
ㅋㅋㅋ모든 문과생들의...
저거 답 4번인가요?
5번입니당
ㅜㅜ
칼럼 감사해요. 근래 읽은 것 중에 가장 와닿네요!!!! 감사합니다
극찬 감사합니다 :) 화이팅입니당
선생님 책이 너무 좋아서 과외할 때 사용하고 싶은데 혹시 가능할까요?
넵 물론입니다 ㅎㅎ
허락해주셔서 감사합니다!!
제가 더 영광이죠 :)
왜 이것이 답인지가 아니라 어떻게 이 답을 고를 수 있는 지에 대한 고민.. 좋은 말인 것같습니다 감사합니다!!
피램 풀세트 구매했어요 쌤!!
얼른 풀어보고 싶네요 흐흐흐
양승진선생님이 말씀해주시는 행동영역과 비슷한 개념인거같아요 글 잘보고갑니당