비슷한 질문을 다시 올립니다. 133g님과 응용통계13님 봐주세요
이 두 명제는 거짓입니다.
사실 아까 그 명제는 참이라고 생각하는데, 제 풀이가 맞는 건지 궁금해서 올려본건데 풀이 써서 명쾌하게 풀어주실 분 없으신가요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
친구 스토리에서 보고 흠칫했네 ㅋㅋㅋ
-
피곤하다 1
피곤
-
가즈아
-
롤 좀 할까 6
요즘 mlb게임에 꽂혀서 이것만 하믄중...
-
맛 좋은 광대가 꼭 한둘은 있었는데 이제 없음
-
이걸로 대화 끝이라는게 슬프네
-
화1이 진짜 11
최저용으론 괜찮다니까 잡숴봐
-
요루시카 - 춤추자 아도 - 밤의 피에로 요네즈 켄시 - Nighthawks...
-
23, 24, 25다 99인데 심지어 25는 간발의 차로 99 방어한 수준이고
-
치대 목표로 반수해보려하는데(9모 성적이 지방치대) 이번 수능때 백분위 대략...
-
이런 사람들을 본받고싶음요
-
Ex)나
-
오늘의 바보 모먼트 10
코노 마지막곡 망쳐서 취소를 눌러버렸어요 그래서 뒤에 점수 못찍음요... 아니...
-
빨간약 평생 안먹을 자신있으니까 새 삶을 줘
-
아직 모을만한 평가원점수가 몇개없어...
-
화장연들 신기한점 12
그 만백으로 다들 대학잘감 과목이 고이기도 했는데 거기서도 고능아뿐임 ㅋㅋㅋ
-
여자 남자 판별법 19
댓글 개수 댓글 달리는 속도
-
일단 나부터 ㅋㅋ
-
teemu.com/event
-
공통기준 4종류 정도 풀면되나?
-
.
-
무슨 메타임? 19
자랑메타임? 나도 참전해봄. 중딩 전교 260등 -> 고딩 전교 13등. 현역...
-
브레턴우즈 점유소유 키트 헤겔 가능세계 예약 콰인포퍼 a는 대체 뭘 다루는거지...
-
아주 좋은 것임 근데 수능엔 인강이 잘 활성화 되어잇음 개꿀임 그냥
-
정병호 선생님 프로메테우스 괜찮나요? 다른 선생님 인강 추천도 좋습니다. 장점과...
-
100 99 1 99 100일거임 아마…? 수학이 발목을 잡았던 케이스. 마지막...
-
과학탐구 4
과학탐구:생1지1 병신 수용소:물1화1
-
2309가 마지막 만백 100아님?
-
올수는화1만 응시할게
-
막 너무 충격적인 것을 봐서(외상 없음) 그 관련된 이야기를 들으면 정신 나가는 거
-
...시1발 나도 이젠 모르겠다
-
실패시 이의 제기
-
다즈비 펀치! 다즈비 펀치!
-
화학을 너무 밀려써
-
진격거는 얘네가 하는 연극? 비스무리한거임 암튼 그럼
-
슬술밥먹으면 좋음 16
먹어야지
-
옛날노래가 왤캐 좋지 16
이유는 모르겠는데 그냥 좋음
-
하가 High가 아니라 아래 하로 인식돼서 커하 백분위100 이러면 에이씨...
-
박종민 장재원만 들어봤는데 이 분들은 그냥저냥 따라갈만 했음 24 수능 89점이었고...
-
수학표점 196점 시험에서 만점받으면 대체 얼마나 위력이셀까 9
막31333으로 서울대 정문폭파하려나
-
킬러 문제 7
틀린 답: 물리1, 화학1중 하나가 들어가면 오답
-
영어 듣기 때 10
독해 몇문제 풀면 ㅍㅌㅊ임 ㅍㅌㅊ만 되고시픔
-
백분위 93
-
항상 불안하고 증명하고싶고 우울에 쩔어있던 사람이였는데 지금 나를 보면 꽤...
-
아니 사실 난 대단하지 않아 우우 옵부이 우렀어
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
어떨거가틈? 견딜수잇을거같음? 아니 수능얼마안남은입시생이면 이해하겠는데 그런거아니라고치면 ㄱㄴ?
-
중간 중간 빈 문제가 있어서 못 올리는 중.... 제게 부지런함을 주세요
-
그렇다. 수능과는 비교도 안되는 학평에서조차 개처망했다.
그리고 댓글에서 f(x)가 연속이든 불연속이든 상관 없다고 하셨는데, 만약 불연속인 경우 문제에서의 극한값은 정의될 수 있지만, f'(a)를 정의할 수 없게되므로 거짓입니다...
윗,밑명제둘다 참인거같은데 어째서 거짓이 되는것이죠?
증명해주실분 안계시나요?
아래 명제는 거짓이에요 f(x)가 a에서 미분불가능하더라도 주어진 극한식의 값 알파는 좌미분계수와 우미분계수의 중간값을 갖습니다 한마디로 첨점인 경우에도 (미분계수가 존재 하지 않더라도) 저 극한값이 존재할 수 있다는 말이죠
위 명제는 h가 제곱꼴이니까 우미분계수만을 고려했다는 점에서 미분계수가 될 수 없는거구요
두 경우 모두 반례로서 f(x)=|x|, a=0인 경우를 들 수 있습니다.
반례가 쉽게 나오네요..
그냥 평균변화율 극한이 항상 미분계수는 아니다라고 보면안되나요?
유사평균변화율의 극한이 미분계수가 되는 경우도 올려드릴까요?
항상 옳지 않으니깐 명제가 거짓이라는 뜻인데요..
평균변화율의 극한이라고 뭉뚱그려 나오는게 아니라 여러가지 형태로 나오니까 구분해서 알아두어야 해요
여러번 기출 됐으므로 소홀히 할 수 없는 부분이구요
a에서 미분가능할때만 참인걸로 알고있어요
a에서 미분가능한지 미분불가능인지가 논점입니다만 ..-.-;
그리고 연속 조건만 가지고도 유사평균변화율 형태의 극한값을 미분계수값과 연결시킬 수 있을때가 있습니다.
아래 문제에서 {f(a+h) - f(a-h)} / 2h 를 {f(a+2h) - f(a-h)} / 3h 로 바꿀 경우 그 극한값은 미분가능 조건이 없더라도 연속 조건 만으로 f'(a) 임을 이끌어 낼 수 있습니다..
{f(a+2h) - f(a-h)} / 3h 인 경우 증명은 입실론 델타로 하나요?
양쪽이 비대칭적인 경우 그냥 귀류법만으로도 증명할 수 있긴해요
미분불가능한 첨점임을 가정하면 좌극한값과 우극한값이 같지 않는 모순이 발생해서 극한값이 존재하지 않는다는 모순이 생겨요
밑 댓글들 보고 놀랐네요,. 기출만 봐도 저게 틀린 건 자명하게 알고 계셔야 하는데, 문과라고 꼭 가형 기출 보지 않으시지 마세요. 충분히 좋은 내용을 얻을 수 있어요....... 가형에도 저런 거 한번 나왔다가 다들 3점짜리에 로피탈 쓰고
맞ㅋ네ㅋ 하다가 피눈물 흘렸죠
밑의 문제는 저는 참이라고 생각하는데 어떻게 거짓으로 판단하셨는지 가르쳐주시면 감사하겠습니다..ㅠㅠ
명확하게 증명하기가 어렵네요
밑 문제는 y축 대칭함수 떠올려 보잖아요? 그럼 lxl만 생각해봐도 미분가능하다고 할 수 없지요 .
아 물론 y축 대칭함수 떠올리기 전에 a=0 이라고 가정해도 좋구요. 그냥 a에서 대칭이라고 하고 보여도 상관은없겠네요
lxl 의 경우 반례로 적절하지 않은데요..
문제의 조건에서는 lim {h->0} {f(a+2h)-f(a+h)} / h 의 극한값이 알파로서 존재한다는 걸 전제로 풀어나가는 거고 lxl는 해당 x=0 에서 해당 극한값이 존재하지가 않으니 논의의 대상이 아니죠...
a에서 대칭이라는 말은 x=a 에서 좌미분계수와 우미분계수가 다른 경우를 말하시는 거 같은데, 그 조건에서 해당 극한식의 값이 존재하는 경우를 반례로 들어주시면....
전 아직도 참이라고 생각하고 있지만 마땅한 증명법을 못찾고있어서..
x=0에서 lxl가 왜 해당 극한값이 없나요....... 명백히 있잖아요 . 우극한 +0, 좌극한 -0 . -> 극한값은 0으로 수렴하는데요.
일일히 풀어드려야하나요
lim {h->0} {f(a+2h)-f(a+h)} / h = lim {h->0} { l2hl -lhl } / h
(i) 우극한 lim {h->+0} {2h-h} / h = lim {h->+0} h / h = 1
(ii) 좌극한 lim {h->-0} {-2h+h} / h = lim {h->-0} -h / h = -1
따라서 극한값이 존재 하지 않아요
서정원 샘 강의 뒤져본 결과 연속이라는 조건하에서 미분계수로 연결 시킬 수 없는 평균변화율은
위의 "좌미분계수나 우미분계수만을 의미하는 경우"와 "대칭적인 평균변화율" 밖에 없다고 하시네요.
이것으로 미루어 보아 밑의 명제는 참으로 보이는데,
지금 질문 올려놨으니 답변 달리는 대로 댓글로 옮겨볼게요ㅠㅠ
아 그러네요... 내일 학원 선생님께 여쭤보고 답변 올려드릴께요..
모바일이라 길게 댓글을 달 상황은 아닌데 밑에 제가 생각한 사고방식이 틀렸다는 건가요?? ㅠㅠㅠ
에이고...죄송합니다...ㅠㅠㅠㅠ
네 님 댓글대로 주어진 식을 '정리' 할 수가 없습니다. 그런식으로 극한의 기본정리를 사용하려면 각각이 수렴한다는 조건이 있어야 하는데 그것자체가 미분가능성을 전제로 하는거기 때문에 사용할 수 없습니다. 미분가능인지 미분불가능인지가 논점인데, 미분가능으로 전제하고 풀어버리면 당연히 풀리죠ㅋㅋ
지금 주목해야할 것은 미분불가능한 점에서 알파가 존재하는게 가능한 것인가 입니다.
그렇군요....내일 다시한번 봐야겠네요....좋은 지식 얻어가네요 ㅋㅋ ㅠㅠ