포카칩모의 A형 후기와 함께 드는 생각( 주의 : 어그로성이 강함..+ 스포)
현역 고3 문과고요, 언어, 외국어를 못하면 수학이라도 잘해야제! 라는 생각으로 오늘 시험에 임했네요.(어차피 수시 등급 맞추는게 목표라서..)
학원갔다오니 10시 20분이 넘어서;; 결국 온라인으로 채점하진 못했지만 A형 답게 노가다를 열심히하면서 풀었네요. 이 점수가 6평, 9평, 수능때도 유지되면 참 꿈만 같겠네요..
전체적으로 작년 수능보다 어려웠던 것 같습니다. 30번 같은 경우에는 행렬로 발견적 추론 문제가 나올줄은 몰랐네요(발견적 추론 맞죠?)
1,2,3,4 : 첫 장답게 실수만 하지말자는 생각... 이번엔 안해서 다행이네요
6번 : 이런 유형자체는 익숙한데 표현은 참신했네요 다들 쉽게 풀었을 것 같네요
9번 : 시간재고 푸는 형식이라 더 깔끔한 풀이가 있을 것 같은데.. 전 걍 계산 조금 해서 쉽게 풀었습니다.
10번 : 무한등비급수를 안한지 오래되서 마름모 꼴 보고 반가웠음(진짜 오랜만에 본 듯) 초항은 쉽게 구했는데 공비를 어케구하지라고 잠시 고민하다가 삼각
형 넓이로 풀었네요. 다른분들은 어떻게 푸셨는지 궁금..
13번 : 눈으로도 풀 수 있을 것 같기는 한데 그냥 계산했어요
14번 : n=2를 기준으로 변한다는 사실만 캐치한다면 쉽게 풀리는 문제였죠.
15번 : 순서도가 나올 줄은 몰랐습니다.( 물론 기출 풀 때 6평엔 간간이 있긴했던거같은데.) 22^2 +1이 나오더라고요.
16번 : 전형적인 행렬 ㄱㄴㄷ 문제.. 항상 살 떨리게 풉니다
17번 : 예비시행 증명문제처럼 행렬과 수열의 결합이 나왔네요. 아무래도 이번 수능 역시 행렬과 수열의 결합이 문제로 나올 것으로 포카칩님이 생각하신 것 같네요
19번 : 한석원 쌤 크포에 있던거랑 비슷해서 쉽게 풀었네요.
20번 : ㄷ선지가 참신했습니다.
21번 : 역시 21번은 미분이죠, f(x) 개형그리고 g(x)를 이리저리 돌리다보면 접점에서의 기울기가 최대임을 알 수 있습니다.
26번 : 2012 수능이었나 그 때도 이런 쉬운문제가 4점이었던 적이 있었죠..
27번 : 처음엔 직관풀이에 도전했는데(휘종찡..) 내공이 약한건지 잘 생각이 안 나서 계산했어요...아 ㅠ
28번 : 아 오늘의 A형 킬러 중 하나였습니다. 처음엔 당황스러웠는데 우선 n=2 를 대입해서 a1을 구하고 시그마를 풀어보니 느낌이와서 Sn을 구할 수 있었네요.
29번 : 지표와 가수 역시 6평에 자주나오는 소재인걸로 아는데 맞는지는 모르겠네요. n이 한자리 수일때는 다되고 n이 두 자리 수 일때는 n>= 40 부터 다 됩니다.(99까지)
30번 : 문제보자마자 당황스러웠네요. 행렬로 발견적 추론이라니.. 일단 노가다를 뛰어보자라는 생각으로 적어나갔는데 처음엔 계속 적어나가도 안보였는데 어쩌다보니 홀,짝 규칙성이 보여서 갯수세는거에만 주의해서 가까스로 풀었네요.
온라인 모의에 못넣어서 아쉽지만..(그래서 긴장이 덜되서 잘 푼 것 같아요) 그래도 오늘 하루는 저한테 칭찬을 해주고픔.. ㅠ (수학이라도 잘해야지...)
그리고 또 느낀건 문제를 푸는 능력과 만드는 능력은 분명히 다르다는것... 진짜 문제 하나하나 어떻게 만드시는지 정말 멋있어 보이네요... 문제 만들 때 어떻게 아이디어를 생각해내시는지 정말 대단하다고 느꼈습니다. 포카칩 짱짱맨ㅎㅎ 좋은 문제 풀어서 6평대비 좋게 한 것 같습니다. 다들 좋은 밤 되세요.
P.S 이글 보시고 기분 나쁘실 분들도 계실거에요... 저도 처음부터 수학을 잘 하지는 못했어요(고1 3월 3등급) 그 이후에 다른과목 공부량을 줄여가면서 수학을 열심히 하다보니 이과로 가서 잘 할 정도는 아니어도 문과에서 못한다는 소리는 안듣는 수준까지는 올라왔어요.. 다들 열심히해서 모두 만점받았으면 좋겠어요.ㅎ (저도 같이 ㅎ )
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
논술 과외 0
해보고싶다 내년에 시험 한번 더 보고 붙으면 해볼까
-
용서못하는데
-
데프트
-
한의대 메타네
-
얼버기 0
떠블 얼버기
-
문과한의대라우럿어 ㅠ.ㅠ
-
ㅜㅜㅜ
-
식당까지 가는 시간 걸어서 약 5분 상당히 귀찮토다...
-
쇼메 이사람 0
서폿 아지르도 했네 전적보고 내눈이 잘못된줄
-
제이찹 오노추 2
아이묭-lucky color 공부 끝날때까지 오르비 안들어올게요…
-
퀘지주도 끝나네 0
이것도 정으로 꾸역꾸역 보던 건데
-
에이어는 술직히 안어럅고 바로 와닿는대 개화는 2틀햇는대…..;:: 에이어가...
-
특이점은 온다 8
일하지 않는 세상이 온다
-
료쟝 획득 8
레어는 좋은 문명
-
내년 과탐 지옥일 거 같은데 ..
-
설기념 레어팔아요 12
5% 페이백
-
맨날 잠들어서 미쳐버리겠음;
-
오히려 예전보다 2
아이디어같은 면에선 실력이 늘은거같음 계산능력이 아예 퇴화되고
-
한수학 한물리 이딴거 없잖아? 한의학의 장점이 있다면 그걸 현대의학이 수용하면...
-
4월쯤 슈냥모 리마스터 나올 겁니당 과년도 슈냥모, 슈냥n제 문제들인데 좀 어려울...
-
늘어지게 잤구나 0
잇올이나가야지
-
공부 시간 많이 부족한데 하나는 해야한다면 뭐할까요?..
-
25학년도 수능 영어 30번 문항 기출분석 | 상세한 해설과 풀이 0
경쟁 상황에서 동기와 감정의 상호작용 및 그 결과 핵심요약 심리학 연구는 경쟁적인...
-
시골집 ㅇㅈ 6
-
25학년도 수능 영어 24번 문항 기출분석 | 상세한 해설과 풀이 0
셀피는 자화상의 역사와 시각적 문화에서 중요한 상징이자 현대적 재해석이다. 핵심요약...
-
25학년도 수능 영어 23번 문항 기출분석 | 상세한 해설과 풀이 0
산업화가 가져온 노동시간 패러다임의 변화 핵심요약 산업화 시대의 도래로 시간,...
-
버드기상 6
-
사실 쌍윤 좀 재밋게 공부하긴했음
-
정확히 말하면 현대과학의 방법론을 도입하지 않는 과거의 과학일 뿐임 현대의학에서...
-
설날뱃지 ㄷㄷ 마려운데 돈이없네 흑흑
-
25학년도 수능 영어 21번 문항 기출분석 | 상세한 해설과 풀이 0
건축과 그림자를 쫓는 사람들 1. 핵심요약 이 글은 로마 제국 시절 건축가의 사회적...
-
https://orbi.kr/00029252881 이거 개웃기네 ㅋㅋㅋㅋㅋ
-
"오래된" 혹은 outdated 된 학문이라고 생각함. 현상에 대한 연구를 하면...
-
으아아아앙
-
[D-6] ✨2025 서울시립대학교 오픈 캠퍼스 투어 ✨ 0
[2025 서울시립대학교 오픈 캠퍼스 투어] 안녕하세요! 함께 꿈을 이루어 나가는...
-
예비는 얼마돌거같음?
-
얼버기 10
-
좋아 12
좋은 아침이라는 뜻
-
하늘이 맑다 4
아.
-
얼버기 1
-
"공무원 하느니 닭 튀길래요" 공무원 선호도, 자영업보다 뒤져 3
성별로 선호하는 직장을 보면 남자는 대기업(28.9%), 공기업(18.8%),...
-
뇌가 늙은 남자 4
아니 뭐가 문젠거임 뭐가
-
>>>로스쿨, 고시 진로가 아닌 사람에게도<<< 닥후인 이유가 뭘까요 입결도 안...
-
한완수 너무 마음에 들던데... 고민되네..
-
부산 근황 1
눈 1도 안 왔어요 너무 맑아요
-
나 잡담태그도 잘 달았는데
-
눈사람 만들사람 2
댓글에 눈사람 ⛄️ ☃️
-
눈이라곤 찾아볼 수 없다
허허.. 겸손하시네요. 언어랑 외국어도 충분히 잘하시는걸로 알고있는데 말이죠.
그렇게 말씀하시면 저는 ㅠㅠ
국어는 평가원것만치면 2~3등급나오네요.. 기출풀면 ㅠ
15번 해설좀 해주실래요? 15번만 계속 못푸네여ㅠㅠ
B=23?일 때 예로써 끝나야하는 A를 찾는것이 목표입니다. 이 때 순서도를 잘 해석해야하는데요.. B= 23이려면 B= 22일 때 B^2= A일 때 B =23 이 됩니다. 즉 A = 484(22^2)이면 B^2= A이므로 B가 1 더해져서 23이 최초로 됩니다. 그러면 23^2> 22^2이므로 예로 가서 A= A+1 이 되어 484 +1 =485가 인쇄됩니다. ㅂ ㅅ 같이 쓴거같아서 요약하자면
묻는것이 B=23?이므로 B가 23이 될 때를 주의해야하는데 이 때 B=23이기 위해선 B=22일 때 B^2= A가 되어야지 B가 1 더해져서 23이 됩니다. 그 이후에는 23^2 > 22^2 이므로 A= 22^2 +1이되어 485가 됩니다. 글로 쓰는지라 설명이 빈약해서 죄송합니다 ㅠㅠ
484까지 밖에 안나와서 뭐가 문젠가 했더니 이거였네요ㅋㅋㅋ 감사합니다!
28번 어케푸나여? 저거 아무리해도 안나오던데 n이 2부터 시작하는건가여?
n=1을 대입하면 어떤정보도 얻을 수 없어서 n=2를 대입해보면 됩니다. 그러면 a1을 알게되지요.
21번좀알려주세요!
f(t)와g(t) 중에서 크지 않은 값을 h(t)로 정의했는데 이 함수가 한 점에서만 미분가능하지 않도록하는 a의 최댓값이 얼마인지가 문제에서 묻는 건데요 우선 f(x)를 그릴 수 있지요? 그러면 그려봅니다. 그리고 g(x) =ax이므로 우리가 그릴 수 있는 그래프니깐 일단 아무데나 그려봅니다. a를 점점 크게해서 그려보면 어느순간에 f(x)와 g(x)가 접하게 되는데요 처음 만나는 점 이전의 x좌표에서는 g(x)가 더큰데 그 점에서 역전되므로 그 곳에서 미분이 불가능합니다.(실제로 계산해도 알 수 있습니다.) 또 다시 만나는 점은 접점이므로 그 곳에서는 f(x)>g(x)임이 변함이없고 미분도 가능합니다. 만약 a가 더커져서 세 점에서 만나게 되면 미분 불가능한 점이 한 점이 아니고 두 점 이상이 나오기 때문에 a가 딱 접선이 되어야합니다.
말을 너무 바보같이 했네요. 요약해보면
1. f(x), g(x)를 그린다.
2. 변수인 a를 점점 크게해보면서 변화를 살펴본다.
3. g(x)가 f(x)에 접할 때 a가 최대이면서 미분불가능한 점이 1개이다.