수능 수학 - 기출문제를 대하는 자세
1. 안녕하세요~
안녕하세요. 저는 이번에 2014수능을 본 수험생입니다.
2013 수능 수학 가형 1등급 턱걸이의 아쉬움으로 인해 2014 수능을 다시 치르게 되었습니다.
1년 전, 자신 있던 과목에 너무 충격을 먹어서인지 2014학년도에는 만반의 준비를 갖추었고, 다소 과한 나머지(?) 수학만 시간이 45분 정도가 남고...(다른 과목은 망해버렸네요///)
그래도 누군가에게는 1등급 -> 100점 의 과정이 필요할 것 같아서 제 경험을 토대로 글을 써보려 합니다.
(2013학년도 수리 6평/9평/수능 100/88/93 -> 그저 그런 1등급...심지어 10월은 2등급;;
2014학년도 수학 강대 모의고사 포함 모든 모의고사 100점!!)
2. 수학 기출 문제를 공부해야 한다?
여러분은 수학 기출을 왜 풀어야 한다고 생각하나요? 어차피 이 세상에 존재하지 않는 새로운 30문제가 등장할 것이고 또 이상하게 수학은 기출문제를 풀어도 수학 실력이 느는 거 같지가 않은데 말이죠.
그럼 우선, 수학 기출문제를 왜 풀어야 하는지 예시 문항부터 보겠습니다.
다들 아시다 시피 아래문제는 올해 대수능 수학B형 29번 문항입니다.
이 문제를 보고 무슨 생각이 드셨나요?
어렵다. 난해하다. 역시 평가원 짱!!!
이런 생각이 들면 이미 기싸움에서 밀린 겁니다.
이 순간, 문제에 써진 표현을 식으로 옮겨보자는 생각을 한 순간, 문제는 쉬운 방향으로 흘러갑니다. -> 이 이야기는 나중에 다루도록 할게요. : 여러분의 관심이 필요합니다!
다음으로 살펴볼 문제는 2012학년도 대수능 수리 가형 21번 문제입니다.
물론, 이 문제를 시험장에서 직접 겪지는 않아서 처음 봤을 때의 느낌은 잘 기억이 남지 않지만, 꾸준히 수학 공부를 하신 상태에서 고3 후반부가 되면 이 문제의 풀이 방법에는 크게 두 가지라고 거의 외울 정도가 됩니다, (되시는 분이 많습니다, 그렇게 되게 되어있습니다, 그래야 합니다.)
첫째 방법은 평면의 법선 벡터를 직접 설정해서 풀이하는 방법입니다.
두 번째 방법은 법선 벡터 없이 세 평면이 하나의 교선을 가질 때를 생각하고 평면화하여 삼각함수를 이용하여 문제를 푸는 방법입니다.
저는 2014수능 수학B형 29번을 풀면서 21번이 자연스럽게 떠올랐고, 덕분에 평가원을 믿고 다음 단계로 진행할 수 있었습니다. (어떤 과정이었을지 스스로 풀어보시면 좋겠습니다.)
3. 기출문제를 언제, 몇 번씩, 어떻게 풀어야 할까?
위에서 구구절절 예시까지 들며 이야기를 했지만, 사실 기출문제를 푸는 데에 정도는 없습니다. 많이 푸는 놈이 이기고, 평가원의 생각을 쉽게 습득하는 녀석이 이기는 거겠죠.
수험생 게시판에 가끔 “수학은 무조건 기출문제죠?”, “수학, 처음부터 기출문제를 계속 돌리면 점수 오르나요?” 라는 질문이 올라옵니다.
저는 이러한 식의 질문에 단호하게 “아니!” 라고 말하고 싶습니다.
이유는 단 하나입니다.
너무 일찍 풀면 기출문제의 맛을 음미할 수가 없습니다. 고기도 먹어본 놈이 잘 먹는다고 수학문제도 잘 푸는 학생이 잘 풉니다. 수험생 초기에는 기출문제가 눈에는 그냥 복잡한 문제로 밖에 안보입니다. 제 주변에 어떤 학생이 했던 짓을 예시로 들어볼게요.
2012학년도 9월 수리 가형 16번 문항입니다.
다들 아실 겁니다. 저 화살표 부분을 적당히 치환하고 계산을 하면 쉽죠.
그런데 그 학생은 대놓고 A 와 B 를 구하고 있었습니다.
민주주의 나라에서 뭘 하든 자기 마음이겠지만 보는 친구들은 안타까워하며 말렸지만 꿋꿋이 계산해 나가는 모습이 참 보기 좋았습니다.
만일 위와 같은 방식으로 똑같이 3번 풀어놓고 ‘난 기출 세 번 돌림~^^’ 이러고 다닌다면 차라리 안 푸느니만 못한 상황이 되고, 기출문제는 정말 쓰레기 of 쓰레기가 되어버립니다.
저도 1년 전에는 무조건 기출! 기출! 하며 수학 공부를 했었습니다.
하지만, 기출이 능사가 아니더군요.
이 세상에 존재하는 많은 양의 문제를 풀어 수학 전반적인 실력을 쌓은 뒤에 기출을 제대로
보는 것이 초기부터 국어처럼 기출 문제집만 잔뜩 쌓아놓고 이미 풀었던 문제들 또 푸는 것보다 훨씬 낫습니다.
그렇다고, 문제집에 있는 기출문제는 모두 풀지 말라는 뜻은 아닙니다!!! 수험생활 초기에도 수학선생님들은 당연히 기출문제를 들고 수업을 하십니다. 기출문제에서 배울 것은 배워야죠. 단, 닥치고 기출은 아니라는 점입니다. 초기에는 기출을 기출처럼 보지 않는 것도 현명한 방법입니다.
4. 마무리
인생에서 첫 수능을 준비하시는 예비 고3, 혹시 기출에만 목멜 준비하시고 계신가요? 다시 도전하시는 졸업생 분들, 혹시 기출만 맹목적으로 바라보시지 않으셨나요?
기출, 분명히 풀고 시험장 들어가야 합니다. 맹목적으로 추구하는 건 무엇이든 위험합니다. 기출 문제와 타 시중 문제들을 골고루 균형 있게 섭취하며 건강하게 수학 공부하시길 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
가형임에도 만표가 154,153 ㄷㄷㄷ 1컷 81,79 통합수능이었으면 1컷 70밑에 나왔을지도
-
새벽피방후 1
새벽 헬스장 후 귀가 다들 잘자요
-
최저러라 표점 필요없음 사탐은 안정1 필요함 현역 시절 생윤 공부가 너무 힘들었음 정법 좋아함
-
제발요...
-
개심심해서 최수준 생2 현강들으러감
-
이투스가 탐구황이엇던 시절... 이투스는 2년연속 아이돌 등을 불러 콘서트를 했엇다...
-
이러면 이제 나처럼 살엄청찌는거임 태양질량의0.66배까지늘어나고 핵융합이시작됨
-
미미미누 존나 자주볼수있음 실물 ㄹㅇ 잘생김
-
외계인피자 프레드피자 뉴욕어쩌고피자 스폰티니피자 더피자스탠드 기타등등피자 맨날 피자시켜먹어서 살이찜
-
24미적 공1선3 84점 백분위 97줬었음 나도 당연히 1등급이겠지 하며 있었는데...
-
걍 배달을 애용하긴 했음 어글리딜리셔스(미국 뉴올리언스식 양념치킨) 외계인피자...
-
카카오맵에 다 저장할게요
-
독서인강추천제발 1
현역때도 문학은 잘해서 항상 틀려도 1개 이하였는데 비문학이 너무 어려워요...
-
70키로 안 넘는 사람은 이 약 절대!! 먹으면안돼! ㅇㅈㄹ
-
아마 이지영 대기줄인듯 신청대기였나..
-
24국어도 멘탈은 안나갔었는데 24미적은 시간 15분 남었는데...
-
어쩌자고 지금까지 안잔건데ㅔ
-
미래향(직원이랑친해질정도로자주감) 미스꼬레아 김치볶음밥(걍 주말마다감) 버거킹...
-
ㄹㅇ 여기가 회전율도 좋아서 자리도 많이났는디
-
언매 하시던 분들 혹시 작수 화작만 풀어본 분들 계심? 15
시간 얼마나 걸리고 몇개 정도 틀리셨나요
-
10레벨이에요 1
레벨 높으면 좋은거죠?
-
배고프네 2
라면 끓일까
-
진짜 올해 수험장에 아는애들 너무많아서 답맞힌게 한임.. 우리 고사장에도 2명이나...
-
지하철에서 메가 가채점 입력했더니 의문사 백개 (ex. 듣기틀,매체틀,탐구1페이지,연산실수…)
-
너무 서러웠음 객관적인 난이도는 모르겟고 내가안한건맞는데 걍 내가 너무 ㅂㅅ처럼느껴졌은
-
호안정대 레츠고
-
걍 ㄹㅇ 이상하더라 내가 반년간 그렇게 노력했는데 이렇게 수능을 망쳤다고? 부모님이...
-
나를위한 불갈비스페셜을만들어줘
-
18수능 수능 끝날시점에 네이버 댓글 ㅈㄴ 봄 19수능 학교 등교후 학원...
-
굿나잇 13
잘자요
-
집에 주워먹을거없는데...
-
보통 어디 어디 넣었다고 지인한테 말하나요?
-
지방러라 울엇어
-
식당 자리 잡는게 너무 힘들었다는 기억밖에 없어요..
-
수능이 끝나고 비내리던 도로위를 자동차타고 가는데 난 차 창문을 내렸음 비가...
-
궁금하니까 저 입학시켜주면안되나요?
-
그래서 더 슬펐어 ㅠㅠ
-
나처럼됨ㅋㅋㅋ
-
우울함이 몇 배는 크게 느껴지는?시간 같음
-
비오는거보면서 편의점 라면먹은 기억이..
-
슬슬 졸릴 때 이거 하나 풀면 한 15번 풀 때 쯤 잠이 깸 30분 풀고 15분...
-
학원 하원하는길에..
-
왜 있는지 모르는 짤들 21
-
내 정신연령은 아무리봐도 13살 14살쯤에 멈춘거같은데
-
십주파 효과있었나요? 11
많이 오르나요실력? 수능전주까지하나여
-
벌써 네시… 6
잠깐이지만 즐거웠어요
-
그 십주파 시즌 생각하면 토 나와서 다시 할 엄두가 안 남 그 땐 주말에 푹...
-
진짜 자야겟다 9
눈이 감겨 바이바이
-
하..
-
네 메뉴에 있습니다 당근케이크
음미.. 문제풀다보면 소름돋더라고요 전율이라해야할까
뒤늦게 질문합니다
2012 21번에서 두 번째 풀이인 세 평면이 하나의 교선을 가진다고 가정하는 것은 가지지 않을 수도 있다는 상황을 배제한 논리적 비약 아닌가요?
또한 2014 29번도 평면화해서, 이루는 각을 세타로 잡고 푸는 것도 논리적 비약 아닌가요?
2014수능을 보자마자 별생각없이 평면화해서 풀어서 맞았지만, 2015수능을 다시 준비하면서 29번에 대한 여러 풀이를 보니 제가 푼 풀이가 논리적 비약이 있다고 느꼈습니다 그래서 29번을 맞은건 운이 좋게 작용한거라고 생각하고있었는데 궁금해서 질문드립니다.
또 수학 1등급 턱걸이 수준에서 실력을 올리신 방법에 대해서 더 여쭤보고 싶습니다
일단 맨 아래 질문은 쪽지로 답변해드렸고...
그게 진정한 수학의 관점에서 보면 논리적 비약이 맞지만 수능 수학을 준비하는 수험생입장에서는 그게 오히려 정당하고 논리적인 길이라고 생각합니다.
그렇기에 기출문제를 꾸준히 공부하고 보는 것이구요.
논리적 비약... 충분히 맞는 말인데
지금 학생에게
'수학적 논리성'
vs
(2014학년도에서 29번을 맞은 것과 같은)
'절대로 운이 아닌 수능적 직감'
둘중에 무엇이 더 중요하신지 고려해보면 답이 나올 것 같습니다.
가지지 않을 경우 직접 해보실수 있어요
한 교선만 삐딱하게 해서 돌려보면