[수학칼럼] 증명을 공부하는게 고난도 문제 풀이에 도움되는 이유
안녕하세요. 상승효과 이승효입니다.
작년에 올렸던 칼럼인데
최근에 증명에 대한 질문을 몇번 받아서
다시 올려드립니다.
Q. (학생의 질문)
"증명하는 과정이 수학에서 고난도문제를 대할 때 어떤 효력을 발휘하나요?"
A. (이승효의 대답)
증명이라는 것은, 교과서에 나와 있는 어떤 정리가 참이 되는 이유입니다. 예를 들어, 피타고라스 정리가 있죠. 그게 참인 이유가 증명이에요. 이걸 배우지 않은 상태에서 혼자서 증명하는 것은 어렵습니다. 증명은 과거에 누군가 엄청나게 똑똑한 사람이 한 것이기 때문에, 그걸 우리가 짧은 시간안에 떠올린다는 것은 어렵겠죠. 그러한 증명이 꼬리에 꼬리를 물고 연결되면서 수학이 발전해 온 것이고, 고등학교 교과서는 그러한 연결에 의해서 만들어진 유기적인 내용입니다. 예를 들어, 수학1, 수학2, 미적분 순서대로 이어지는 것에는 다 이유가 있는 것이죠.
증명하는 과정이 수학에서 고난도 문제를 대할 때 어떤 효력을 발휘하는가. 고난도 문제를 풀어봤다면 알겠지만 여러가지 발상들이 필요합니다. 도형문제라면 어떠한 상황에서 보조선을 어떻게 긋는다, 함수의 식이 주어졌다면 어떻게 한다, 등등. 문제만 풀어온 학생이라면 이러한 발상을 문제를 풀어야 배울 수 있는 거라고 생각하겠지만, 사실 수능에 나오는 모든 발상은 100% 교과서 증명 안에 다 들어있습니다. 그것을 바탕으로 수능 문제를 출제하니까요.
제가 전에 쓴 글에서 미분을 MRI에 비유했는데, 글 중간에 보면 MRI검사를 수백명 해보면서 인체의 신비를 깨달아가는건 어려운 일이라고 했죠? 증명을 배운다는 것은 마치 살아있는 인간을 배우기 전에 해부학을 배운다는 것과 같습니다. 이미 과거에 다른 사람들이 발견한 정보들을 바탕으로 교과서적인 원리들을 먼저 배우는 것이지요. 따라서 교과서 정의, 정리, 증명에서 배운 내용을 바탕으로 기출 문제를 풀게 되면, 문제마다 새로운 것을 배우는 것이 아니라, 문제를 풀면서 교과서 내용을 확인하게 되는 것이지요. 그러한 과정을 기출 분석이라고 합니다. 따라서 기출을 보기 전에 교과서 내용을 정확히 알고 있는건 매우 중요해요.
증명을 해야 하는 두번째 이유. 학생은 미분가능한 함수는 연속함수이다 라는 것을 증명할 수 있나요? 이건 실력지상주의 1주차에서 수업한 내용인데요. 대부분의 학생은 이걸 증명할 수 없습니다. 왜냐하면 미분가능한 함수와 연속함수의 정의를 정확히 모르거든요. 느낌으로만 알고 있고 식으로 정확히 표현할 수 없다면, 매우 쉬운 한줄짜리 증명임에도 불구하고 할 수 없습니다. 그럼 정의를 알고 있는 것이 왜 중요한가, 예를 들어 어떤 함수가 미분가능함을 보여라, 라는 문제가 있을 때 대부분 학생은 1.연속이다. 2.좌미분계수=우미분계수가 같다. 라는 순서대로 문제를 풉니다. 이건 아주 대표적인 잘못된 풀이라고 할 수 있는데, 정의를 잘 모르기 때문이구요, 저렇게 풀리는 3점짜리 문제는 문제가 없는데 4점짜리 문제로 가게 되면 해결이 안되는게 생겨요. 문제풀이의 접근방법은 반드시 정의->정리 순서대로 나아가야 하는데,오개념으로 풀다보면 접근 자체가 안되는 경우가 생깁니다.
증명을 해야 하는 세번째 이유. 직접 증명을 써보면 알겠지만, 아는 내용이라도 논리적으로 설명하는 것이 쉽지가 않습니다. 그건 학생들이 아직 논리적 사고력 또는 표현력이 부족하기 때문이죠. 교과서에 있는 증명들은 매우 간결하면서도 논리적입니다. 복잡한 증명은 고등학교 교과서에 나오지 않기 때문에 누구나 이해할 수 있는데, 그걸 자신이 직접 해보는건 쉽지 않아요. 강사가 설명하는 내용을 들으면 이해는 되지만 똑같이 설명해 보라고 하면 쉽지 않은것과 같은 이유입니다. 즉, 논리적 사고력을 키운다는 것은 다른게 아니고, 연습입니다. 수학은 그것을 연습하는 학문이에요. 고등학교를 졸업하면 미적분이 쓸모가 없을 수도 있고 대부분의 성인은 수학을 잊어버리지만, 중학교까지만 다닌 사람과 고등학교까지 수학을 배운 사람이 논리적 사고력에서 차이가 나는 것은 수학적인 연습을 했기 때문입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나만운없네 2
딩선족다쳐내
-
왜 봉선동으로 안옴ㅠㅠ
-
근데 먼가 오랫동안 따뜻한 물에 들어가 있고 싶기도 하고..
-
더 들을거 추천해주세요
-
과제는역시 8
내일하는것
-
오늘의 야식은 5
짜파게티랑 김치 음료수는 콜라
-
철권이나 해야지 14
캐릭 추천 ㄱㄱ
-
기출이랑 사설만 푸는 무료한 수험생활에 그나마 재밌는 지문+머리쓰는 기분 나서...
-
백분위로 89 93 3 98 98인데 진학사에서 중대 경영이 3칸이 뜨던데.......
-
왜 아직도 2021 새해를 비는겁니까
-
1교시부터 7교시까지 반이 시끄러워서 수학만 하고있는 07정시파이터입니다.....
-
1학기 복학하고 2
2학기 반수로 볼까 ....
-
텔스 중경외시권 0
지금 얼마나믿어도됨? 99ㅇㅈㄹ나는데
-
사회문화현상이랑 자연현상 구별이 잘 안되는데 어떡함
-
ㅈㄱㄴ
-
뭐 더 추천함?이유도 적어주면 ㄱㅅ
-
요즘 리겜이 잘 안되네 12
늙었나
-
정말 공부량에 비례하게 성적이 올랐는지 생각해보면 거의 아닐텐데 이십대 초반을...
-
애니 뭐보지 6
오늘 시험 끝나고 진격거 파이널 보고 나서 뭐보지... 주로 럽코 보는데 볼만한거...
-
문제 유형 사탐중에선 제일 개 ㅈ같은데 그래도 참고하시나
-
지금이 1억3천인데 어디까지 갈지 궁금하네요 또 여긴 주식시장이랑 다르게 각종...
-
오르비는 26티콘으로 그때가 마지막 기회임을 예언한거임....
-
각자 점심 먹고 홍대쪽에서 만날건데 머해야됨 ㅠㅠ 둘다 라쿤 좋아해서 라쿤카페도 생각중 머하지 진심
-
있음? 강기원 현강 가려는데 뉴런에 없는 내용도 알려줌? 실전적으로 잘 체화할 수...
-
오늘이 11월 29일이니까 태양의 적경이 대략 16h? 저기 보이는 저 별자리...
-
어디갈수있나요
-
갑자기 궁금한게 2
의대 25학번들은 선배들이 꺼리거나 안좋게 보려나
-
님들은 취미가 뭐에요? 14
스트레스 푸는 취미가 있으신가요?
-
대학가기전에 n수밖으면서 미기확을 셋다 즐겨보라는게 아닐까 기하 찐 고민되네 미적...
-
코 수술 해라
-
ㅈㄱㄴ
-
낄낄낄
-
성형비용 근데 1
눈코 다합치면 500정도 나올텐데 시발 이거 어케 내냐 비용… 이거말고도 보증금도...
-
첨에는 그냥 내가 여기까진가보다하고 받아들이려했지만 노력한거에비해 성적이 잘 나오지...
-
성격상 예전부터 '뭔가 무지성인 거 같은 윗사람의 지시에 아무 생각 없이 따르기'를 잘 못했음...
-
수능 진입 희망하시는 분들 궁금한 것들 여쭤봐주시면 아는 범위 안에서 답변해드리고...
-
근데 병원 가고싶어도 부모 동의 필요해서 아직 못감
-
멘탈 개박살난거 기억나뇨 ㅋㅋㅋ 쉬운 문제는 좀 풀만한데 좀만 어려워지면 그냥 하루...
-
ㅈㅔ 팔자도 같이 필 수 있었을까요
-
사반수하면 2
낭만의 물2 생2 갈길게
-
떡볶이존나먹고싶 3
오몬오온노ㅗㅗ
-
스튜어트 정리 사교좌표계 시소 정리 등등 잡기술 마늠 사실 아는 잡기술은 별로 없음뇨
-
나 장례식하면 부모님만 계실듯
-
Fact 5
이대 다니고 있는 애들 보통 생각이 자기들 학교가 중앙대급 혹은 그 이상이라...
-
42223이고 생1 지1 했었습니다
-
각각 하루평균 몇시간정도 하셨나요?
-
26수분감 끝내고 바로 엔제실모돌리기vs수분감끝내고 26뉴런듣기 둘중하나...
-
간장 새우 먹고 싶다 새우 튀김 먹고 싶다 크아아아아악
어떤 교과서로 증명을 연습해야 되나요?
증명은 부차적인 것이 아니라 교육과정에서 반드시 알아야 하는 내용이기 때문에, 중학교부터 고등학교까지 모든 교과서에는 같은 증명이 포함되어 있어요.
감사해요 선생님! 하나만 더 여쭙겠습니다ㅠ
미적분인데 수학,미적분,수학1,수학2 찬찬히 읽고 증명연습할 생각인데 더 해야할 교과서 있을까요? 아니면 4권도 충분하다 보시는지요~?
도형은 중학교 교과서도 봐야 합니다. 어렵지는 않으니까 금방 끝나요~