4월 수학1/2 수업 안내(주말까지 할인)
안녕하세요.
상승효과 이승효입니다.
선택과목 무료특강.
예상을 훌쩍 뛰어넘는 반응! 신청자가 270명 ㅠㅠ
저도 오랜만에 100%라이브 특강이라
아주 재밌게 잘 마쳤습니다. 정말 감사합니다!!!
신청자에게는 전원 쪽지로 링크 보내드렸는데
혹시라도 못받았다면 쪽지주세요.
자~ 오늘의 본론은 공통과목!
들어가기 전에 잠깐...
수강 할인 행사가 진행되고 있으니 놓치지 마세요.
프로모션이 이번주말에 끝난다고 하네요.
"수학1 개념속성 + 기출분석" 강좌 패키지 할인!
"수학2 셀렉션 - 삼차함수" 특강 (2만원입니다.)
시간표 보러가기
https://academy.orbi.kr/intro/teacher/#3)
1. 수학1 준킬러는 결국 도형
요즘 준킬러가 핫이슈죠.
더이상 27+3 킬러대비하는 시대가 아니잖아요.
그럼 준킬러 대비하려면 문제를 많이 풀면 될까요?
푸는 것도 중요하지만, 먼저 준킬러에 대해 잘 알아야겠죠.
작년 수능 문제 한번 봅시다.
문제를 보자마자 이런 그림이 그려진다면
이 문제는 더이상 준킬러가 아니라
시험끝나고 기억도 안나는 쉬운 문제인거죠.
수학1에서 각 단원별로 중요한 포인트가 있기는 하지만
수학1을 아우르는 핵심은 바로
점 이거든요.
미분을 배우기 전에 배우는 수학1은 무조건 점이에요.
그래서 자연스럽게 도형이 문제에 활용되는 것이죠.
따라서
수학1 준킬러를 쉽게 풀기 위해서는
도형을 제대로 공부해야 합니다.
두가지.
1) 중학교 도형 - 증명까지 마스터
2) 고1 수학 - 도형의 방정식 마스터
이런걸 교과서 그대로 정확히 이해, 암기(!!) 해야 한다는 뜻.
이번주 개강하는 수학1 수업을 들으면
도형이 수학1에서 어떻게 활용되는지
완벽하게 정리할 수 있습니다.
수학1과 도형을 한번에!
비대면 올라이브 수강도 가능합니다.
"수학1 시간표 보러 가기"
https://academy.orbi.kr/intro/teacher/252/l
2. 수학2는 그래프와 식세우기
삼차함수의 그래프는 아주 중요합니다.
아직도 많은 학생들이 내신 방식에 익숙하죠.
삼차함수의 성질을 잘 정리해서 외우기만 해도
문제 해석이 엄청나게 쉬워집니다.
연립해서 계산하기, 이런 태도를 버려야 되요.
상승효과에서만 배울 수 있는 꿀팁.
"기울어진 축"에 대해서 알려드릴게요.
그래프를 그려서 해석할때 아주 중요한 개념이에요.
1) 쉬운 버전
: 문제에서 "x=1에서 극점을 갖는다." 가 주어질 때
직선을 하나 그리세요. 이
직선은 y=f(1) 이고 그래프가 접하는 '축'이 됩니다.
그래프 모양은 아래 그림처럼 4개 중에 하나겠죠.
스치면서 위에서 접하거나 / 아래서 접하거나
뚫.접하면서 우상향하거나 우하향하거나
만약 최고차향의 계수가 양수인 삼차함수라면
보라색은 해당이 안될테니 신경쓰지 말고
나머지 세 개 중에서 하나일겁니다.
2) 기울어진 축
: 문제에서 "f(1)=3, f'(1)=2" 가 주어질 때
즉, 함숫값과 미분계수가 세트로 주어지는 경우
조건을 해석해보면 이런 경우 정말 많죠.
이걸 연립방정식 푸는데 많이 쓰죠?
노노. 그래프 바로 그릴 수 있어요.
함숫값과 미분계수의 조합은
그 점에서의 접선(기울어진 축)을 알려줍니다.
(1,3)을 지나고 기울기가 2인 직선을 그리면
f(x)는 무조건 그 직선에 접하게 되어 있어요.
즉 y=2x+1 이 f(x)의 x=1에서의 접선이에요.
극점을 알려주는 문제나, 접선을 알려주는 문제나
함숫값과 미분계수를 알려주는 문제는
정확히 똑같은 조건인 것이에요~
아래 그림처럼 기울어진 축 y=2x+1이 있고
그래프는 보라색처럼 위에서 접하거나
초록색처럼 아래서 접하거나
주황색처럼 뚫고 지나가면서 접하거나....
이렇게 함수의 그래프를 '축'이라는 관점에서 이해하면
그래프를 아주 쉽게 그릴수 있고
이 칼럼에서 설명은 안했지만 식도 간단히 세워집니다.
(여기서 축은 x축 뿐만 아니라 평행이동된 축,
또는 기울어진 축도 포함되겠죠)
"셀렉션 - 삼차함수" 특강을 들으면
3시간만에 삼차함수에 대한 정말 많은 것들을
체계적으로 배울 수 있습니다.
속된말로 정말 지리는 경험, 약속하겠습니다.
등급에 관계없이 정말 깜짝 놀랄거에요.
이번주말까지만 2만원에 할인중입니다.
"셀렉션 특강 수강신청하러 가기"
https://academy.orbi.kr/booking/gangnam/payment?selected_lecture=732
그럼 다들 화이팅하시고!
궁금한 점은 댓글로 남겨 주세요 :)
유튜브에서도 꾸준히 공부법 관련 컨텐츠가 업로드 중입니다.
구독 부탁드릴게요. :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1교시부터 7교시까지 반이 시끄러워서 수학만 하고있는 07정시파이터입니다.....
-
1학기 복학하고 2
2학기 반수로 볼까 ....
-
텔스 중경외시권 0
지금 얼마나믿어도됨? 99ㅇㅈㄹ나는데
-
사회문화현상이랑 자연현상 구별이 잘 안되는데 어떡함
-
ㅈㄱㄴ
-
뭐 더 추천함?이유도 적어주면 ㄱㅅ
-
요즘 리겜이 잘 안되네 11
늙었나
-
정말 공부량에 비례하게 성적이 올랐는지 생각해보면 거의 아닐텐데 이십대 초반을...
-
애니 뭐보지 3
오늘 시험 끝나고 진격거 파이널 보고 나서 뭐보지... 주로 럽코 보는데 볼만한거...
-
문제 유형 사탐중에선 제일 개 ㅈ같은데 그래도 참고하시나
-
지금이 1억3천인데 어디까지 갈지 궁금하네요 또 여긴 주식시장이랑 다르게 각종...
-
오르비는 26티콘으로 그때가 마지막 기회임을 예언한거임....
-
1. 방멱 (power)원 O와 점P가 주어졌을 때 점 P를 지나는 직선과 O의...
-
각자 점심 먹고 홍대쪽에서 만날건데 머해야됨 ㅠㅠ 둘다 라쿤 좋아해서 라쿤카페도 생각중 머하지 진심
-
있음? 강기원 현강 가려는데 뉴런에 없는 내용도 알려줌? 실전적으로 잘 체화할 수...
-
오늘이 11월 29일이니까 태양의 적경이 대략 16h? 저기 보이는 저 별자리...
-
어디갈수있나요
-
갑자기 궁금한게 2
의대 25학번들은 선배들이 꺼리거나 안좋게 보려나
-
님들은 취미가 뭐에요? 14
스트레스 푸는 취미가 있으신가요?
-
대학가기전에 n수밖으면서 미기확을 셋다 즐겨보라는게 아닐까 기하 찐 고민되네 미적...
-
코 수술 해라
-
ㅈㄱㄴ
-
마크는 알겠는데 너무 조용하네
-
낄낄낄
-
성형비용 근데 1
눈코 다합치면 500정도 나올텐데 시발 이거 어케 내냐 비용… 이거말고도 보증금도...
-
첨에는 그냥 내가 여기까진가보다하고 받아들이려했지만 노력한거에비해 성적이 잘 나오지...
-
성격상 예전부터 '뭔가 무지성인 거 같은 윗사람의 지시에 아무 생각 없이 따르기'를 잘 못했음...
-
수능 진입 희망하시는 분들 궁금한 것들 여쭤봐주시면 아는 범위 안에서 답변해드리고...
-
근데 병원 가고싶어도 부모 동의 필요해서 아직 못감
-
1. 완전사변형 (complete quadrilateral)이렇게 직선 4개와 그...
-
멘탈 개박살난거 기억나뇨 ㅋㅋㅋ 쉬운 문제는 좀 풀만한데 좀만 어려워지면 그냥 하루...
-
ㅈㅔ 팔자도 같이 필 수 있었을까요
-
사반수하면 2
낭만의 물2 생2 갈길게
-
떡볶이존나먹고싶 3
오몬오온노ㅗㅗ
-
스튜어트 정리 사교좌표계 시소 정리 등등 잡기술 마늠 사실 아는 잡기술은 별로 없음뇨
-
나 장례식하면 부모님만 계실듯
-
Fact 5
이대 다니고 있는 애들 보통 생각이 자기들 학교가 중앙대급 혹은 그 이상이라...
-
42223이고 생1 지1 했었습니다
-
각각 하루평균 몇시간정도 하셨나요?
-
26수분감 끝내고 바로 엔제실모돌리기vs수분감끝내고 26뉴런듣기 둘중하나...
-
간장 새우 먹고 싶다 새우 튀김 먹고 싶다 크아아아아악
-
뭘로 갈까요? 이번 수능 생지 31 인데 유전이 저랑은 너무 안맞는 거 같아서...
-
면접망침 멘탈 5
어제 면접 개망쳣는데 자꾸 그 장면이 반복재생됨 자살뛰러감 시발!!!ㅜㅜ
-
왜 조회수 높냐 0
슈냥 방송 안 켜있는데
-
현역 6(언매) 9(화작) 수능(화작) 원점수 100 1~2월에 단기과외 바짝 하고...
-
처음 느껴보는 따뜻함이다
-
넘비싼데 거의 팔십마넌돈아닌가여 저만큼의가치를함?
첫번째 댓글의 주인공이 되어보세요.