초등학생도 이해하는 필요조건, 충분조건
안녕하세요. 독해와 논리를 가르치는 이해황입니다.
아래 내용은 PSAT/LEET 베스트셀러 『논리개념 매뉴얼5.0』을 바탕으로 제작되었습니다.
초등학생도 이해할 수 있게 썼지만, 수능뿐만 아니라 PSAT/LEET 수험생도 도움이 될 만한 자료입니다. :)
--
I. 들어가기
초등학교 과학시간에 전기회로를 배우며 직렬연결, 병렬연결을 배웁니다. 이를 통해 논리적 사고의 핵심인 필요조건, 충분조건, 필요충분조건을 직관적으로 이해할 수 있습니다. 결론부터 말하자면, 필요조건은 직렬연결에, 충분조건은 병렬연결에, 필요충분조건은 단일연결에 대응됩니다.
이를 간결히 설명하기 위해,다음과 같이 표현법을 약속하겠습니다.
L : L에 불이 들어온다.
~L : L이 거짓이다. 즉, L에 불이 들어오지 않는다.
A : A함에 전지가 들어있다.
~A : A가 거짓이다. 즉, A함에 전지가 들어있지 않다.
II. 전기회로와 논리적 개념
1. 직렬연결
직렬연결 전기회로에서는 다음이 성립합니다.
~A이면 반드시 ~L이다.
논리학에서는 ~A이면 반드시 ~L일 때, A를 L이기 위한 필요조건이라고 합니다. 이를 일상어에서는 다음과 같이 표현합니다. (아래 표현들을 익혀두면, 글을 읽거나 쓸 때 요긴하게 활용할 수 있습니다.)
A는 L이기 위한 필요조건이다.
≡ ~A이면서 L인 경우는 없다/불가능하다.
≡ (오직) A이어야(만)/일 때만/인 경우에만/인 (전제/가정/조건) 하에서만 L이다/일 수 있다/가 보장된다.
≡ L이려면 A이어야(만) 한다.
≡ L이기 위해서/위하여 A이어야(만) 한다.
≡ A는 L이기 위해 필요하다/필요한 조건이다/필수적 조건이다.
≡ A이지 않으면/않는 한/않는 이상 L?일 수 없다.
≡ L은 A를 함축/전제한다.
≡ A는 L의 요건/전제조건/선결조건/요구조건/핵심조건이다.
≡ A가 성립되지 않으면 L일 수 없다/이 성립될 수 없다.
≡ A는 L이기 위해 필요하다/요구된다/없으면 안 된다/반드시 있어야 한다/필수적이다/필수불가결하다.
마찬가지로 ~B이면 ~L이다, ~C이면 ~L이다가 성립하므로, B는 L이기 위한 필요조건이다, C는 L이기 위한 필요조건이다도 성립합니다.
2. 병렬연결
병렬연결 전기회로에서는 다음이 성립합니다.
A이면 반드시 L이다.
논리학에서는 A이면 반드시 L일 때, A를 L이기 위한 충분조건이라고 합니다.
이를 일상어에서는 다음과 같이 표현하기도 합니다.
A는 L이기 위한 충분조건이다.
≡ A이면서 ~L인 경우는 없다/불가능하다.
≡ A이면/일 때/인 한/인 경우에/인 이상/하에서/이기만 하면/인 것만으로도 L이다.
≡ A가 성립하면/보장되면 L이 보장된다/성립한다.
≡ A라는 전제/가정/조건 하에서 L이다.
≡ L는 A의 논리적 귀결이다.
마찬가지로 B이면 L이다, C이면 L이다가 성립하므로, B는 L이기 위한 충분조건이다, C는 L이기 위한 충분조건이다도 성립합니다.
3. 단일연결
전구가 하나의 전지와 단일연결되는 가장 단순한 경우를 생각해봅시다. 이때는 다음이 성립합니다.
A이면 반드시 L이다.
~A이면 반드시 ~L이다.
따라서 여기서 A는 L이기 위한 필요조건이면서 동시에 충분조건입니다. 이때 철학자들은 간결히 A를 L이기 위한 필요충분조건이라고 합니다.
A가 L의 필요충분조건이라는 것을 영어로는 A if and only if(줄여서 iff) L이라고 표현합니다. 근데 한국어에는 iff에 딱 들어맞는 표현이 없어서, 다음과 같이 다소 어색하게 표현됩니다.
A일 때, 그리고 오직 그때만 L이다
≡ A일 때 L이다. 그리고 오직 A일 때만 L이다.
≡ A는 L이기 위한 충분조건이다. 그리고 A는 L의 필요조건이다.
≡ A는 L이기 위한 필요충분조건이다.
맥락에 따라 A는 L의 기준이다도 필요충분조건을 타내는 표현으로 볼 수 있습니다.
4. 직렬연결을 병렬로 연결
직렬연결을 병렬로 연결한 아래와 같은 전기회로도 상상해볼 수 있습니다.
이때 A는 L이기 위한 필요조건은 아닙니다. 아래처럼 ~A여도 L일 수 있으니까요.
또한 A는 L이기 위한 충분조건도 아닙니다. 아래처럼 A여도 ~L일 수 있으니까요.
하지만 필요조건은 아닌 충분조건 덩어리 (A and B and D)를 기준으로 보면
A는 이 덩어리의 충분조건은 아니지만 필수적(필요한) 부분으로 볼 수 있습니다.
이 개념을 John Mackie라는 철학자가 1960년대에 INUS조건이라고 이름 붙입니다. 이는 an Insufficient, but Necessary(Non-redundant) part of an Unnecessary but Sufficient condition의 약어인데, 필요조건은 아닌 충분조건 덩어리의 불충분하지만 필수적인 부분 정도로 번역할 수 있습니다.
뭔가 복잡해 보이지만, 직렬연결을 병렬로 연결한 이미지를 떠올리면 어렵지 않을 겁니다.
5. 병렬연결을 직렬로 연결
앞서 INUS조건이 직렬연결을 병렬로 연결한 개념이었으니, 반대로 병렬연결을 직렬로 연결하는 것도 상상할 수 있지 않을까요? 아래처럼요.
이러한 구조는 공학에서 결함 허용 시스템(Fault Tolerance System)으로 불립니다. B를 병렬로 이중화, 삼중화하여 다른 요소들과 직렬로 연결하면, B에 결함이 생기더라도 A, C에 문제가 없는 한 시스템이 정상운영될 수 있기 때문입니다. 생명유지장치를 운영하는 병원에서 비상발전기를 운용한다든가, 데이터센터에 화재가 날 경우를 대비하여 서버를 이중화, 삼중화하여 분산시켜놓는 일 등이 위와 같은 시스템으로 설명될 수 있습니다.
III. 전기회로와 논리적 추론
... 인강 찍어야 해서 나머지는 2편에서 자세히 다루겠습니다.
좋아요가 많이 눌릴수록 2편이 빨리 업데이트됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진심이다
-
고닉ㅇㅈ특 6
나보다못생긴사람없음
-
ㄹㅇ 생각의자...
-
난 너무 못생겨서 꿈도못꿈
-
설낮공 vs 건수의 12
머리는 건수의인데 설뽕에 가득참…. 본인이라면 어디가실거같으신지
-
ㄱㅁ이론..
-
ㅇㅈ 23
왼쪽이 저임
-
공부하러 감 1
시험 전날에 옯질하고 있음 안 될 거 같음..
-
이렇게 다들 사탐런하면 사탐 어려워지는거 아닌가요.. 10
하루에 사탐에 3시간정도 투자하면 어려워져도 해볼만하려나
-
아가 취침 6
잘자
-
. 0
.
-
ㅇㅈ 12
알아서식별해보셈
-
진짜 자기관리만 잘해도 평타는 먹고 들어가니깐 내 전전글 보셈 ㄹㅇ 남성분들은...
-
뱃지 보이나요? 11
달렸는지 모르겠어요 지1 서울 배성민 이미지
-
난 내 사진이 없음.
-
ㅈㄱㄴ
-
과외 하고싶긴한데 집이랑 대학이 거리가 멀어서 집 근처에 있는 학생을 가르치기도...
-
순식간이네
-
나 딱알았어 2
ㄱㅁ 치는애들이 쌉기만러임 ㄱㅁ칠때 쌉기만러들 표정
-
어떻게 하는게 효율적이고 좋을까요?? 강의라던지,공부할 부분이라던지.. 내신 아니고...
-
외울거 ㅈㄴ많아보이는데 결국 꾸역꾸역 외워지겠죠?? 유튜브 보는데 어질어질하던데.....
-
사수생 ㅇㅈ 10
팀 04의 출격
-
언미영생지 백분위 현역 47 96 2 93 81(이때 국어 선택과목부분 마킹을...
-
보건증은 좀.
-
ㅇㅈ 5
전신샷ㅇㅈ 너는의대가야겠다라는말ㄴㄴ
-
제일 궁금함
-
그냥 ㅇㅈ 32
심심해서요
-
잘생긴 형아들이면 쪽지 보내야함 빨리 급ㅂ해
-
재탕은에바지 1
안할게
-
빈부격자 좆되네..
-
영어 2>1올리분들 어케하셨나요
-
눈 ㅇㅈ 28
-
재테크 ㅇㅈ 0
수집 욕심을 버리니 10만원이 생기다.
-
고도근시들은 안경벗고 헤어스타일 바꾸면 누군지도 잘 못알아보겠는 경우가 허다함뇨...
-
진학사 3칸 1
모집인원 51명 작년 예비 182번까지 돌았던 과 가능성 있을까요?
-
아오기만그만.
-
캬캬
-
근데 요즘 이런 철학적인? 생각이 재밌는 거 같아요 1
외모와 자기관리, 재능과 노력 자식이 미래에 부모를 부양하지 않아도 되는? 낳아준...
-
ㅈㄱㄴ
-
살빼보라<<<< 13
실제로20kg뺐었음 옷잘입어봐라 무신사서옷도사입어봤었음 안경쓰지마라 그래서안경도안씀...
-
시험공부를 더 할 수 있지 않을까
-
너닿 볼까 2
흠
-
진짜 못생긴 사람들은 거의 없는 거 같던데
-
일반못생이면 외향성 리더십 능력 따위로 여자 반하게 만드는 경우 많이 봄 눈에서 하트가 나온다니께
-
2천이상은 받고 하방이 1.5-1.8천이라고 들었는데 궁금
-
ㅋㅋ..
-
그냥 잘씻고 친구랑 놀러다니면서 취미 즐기면 행복하지 않나 연애 안 하는 게...
-
현역 24수능 낮4높4322 재수 2506 백분위100인 1 중간2 211 25수능...
오 좋은 글이네요
논리학을 전기회로로 비유하다니... 신박합니다
전기회로가 논리연산자에 완벽하게 대응된다는 것은 클로드 섀넌(Claude E. Shannon)이 21살 때 전기공학 석사학위 논문으로 발표한 내용이긴 합니다. 은 인류 역사상 가장 위대한 석사학위 논문, 20세기 가장 중요하고 가장 유명한 석사학위 논문 등으로 일컬어지고요.
저는 그 아이디어를 차용하여 수준을 더 낮추고, INUS조건 개념을 전기회로로 표현해본 것에 불과합니다. :)
‘섀년의 도깨비’의 그 쌔넌 맞나요?
네 ㅎㅎ
와..ㅠㅠ 정말 대단하시네요.
좋은 글 써주셔서 감사합니다!!
https://youtu.be/AiNqEz4yXh4
추론규칙을 추가하여 영상으로도 올렸으니 시청해보세요. 감동적일 겁니다 ㅎㅎ