2468 N제 수2 (N제 형식 ver.) 배포!
2468 n제 (수2).pdf
안녕하세요!
2468 N제 수2 (N제 형식 ver.) 배포합니다!
올렸던 수2 N제의
N제 형식 ver. + 문항 추가
입니다!
(이름이 2468 N제인 이유는 포만한 닉이 2468이라서 입니다)
풀어주신 모든 분들께 감사드리며
곧 있을 6평 및 수능까지 진심으로 응원합니다!
감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
개같은 연휴
-
화작확통생윤사문 최강담뇨단 된거가틈
-
@26letsgo 저도 헬스도함ㅋㅋ(따라쟁이아님) 진짜..진짜열심히할거임
-
예배할 때 0
웃참이 제일 힘들군
-
잘자요 2
ㅇ
-
@studywith_pham 참고로 헬스도 할거임 으히히
-
생1이랑 지1 해왔는데, 다들 과학2나 사탐으로 옮겨타는 것 같아서 질문남겨봐...
-
100퍼상태 충전을 하루 3번해야함
-
ㅎㅇ 2
-
와 죽겠다 진짜 0
3시에 자서 제사지낸다고 7시에 일어났더니 죽겠다
-
오래쓴건가요? 이제 바꿀때가 됐나 싶어서요… 아이폰12입니당
-
체례상 3
요즘 물가가 많이 비싸진듯
-
남자 미필 삼수 1
어떻게 생각함 현역 평백 54>재수 84까진 올렸는데 아쉬움이 남네 학고나 이학기...
-
얼버기 0
4시간반정도 자니 하품ㅈㄴ해 나도 늙었나봐
-
지금 성대 공학계열이랑 한양대 산공, 경찰대 붙었는데 어느곳으로 가는게...
-
대깨설, 설의치수약은 투과목을 하는 게 가산점이 있으니 유리하다는 것은...
-
해야됨ㅁㅁ?
-
슬슬 자야 하는데... 20
암산테스트 신기록 세울때까진 못자...
-
누룽지닭죽 빈츠 어케 참음
-
언젠가 드디어 밤이 밝아오면 이젠 눈을 떠 줘, 봐 줘. 잠에서 덜 깬 모습의 너를...
-
이거 머임 0
ค็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็...
-
덕코인 주면 덕담해줌 18
네
-
물2 ebs 0
현역 물2 ebs만으로 가능하다 보십니까 힘들어요 ㅠㅠ
-
하버드가서 미국 대통령 될빠에 붓산대 댕긴다 내같으면 아이고 가시나야 . . . 붓싼대가 최고지 마
-
잘 시간아에오
-
삼반수 0
2월이랑 학교 다니면서 공부 간간히 할 거고 5월 후반이나 6월 초부터 공부...
-
마 새끼 행님 마 제 기억나시죠 매형 마 내가 잘 될거라 했다 아임니까 마 아구...
-
제사 지내고 잔소리 듣고 낮잠 자고 외갓집 가기
-
그런 실화없나
-
얼버기.... 6
진짜 간만에 푹 잔듯..
-
얼버기 3
즐거운 설명절 보내세요~
-
경제적 여력때문에 대성,메가,이투스 같은 인강사이트는 못 들을 거 같습니다 개념은...
-
결국엔 일곱시군 1
...제사지내고 자야겟네
-
떡국 먹었음뇨 2
저 이제 74살임뇨
-
얼버기 1
-
만약에 100명이 2배수로 들어왔는데 99명은 다 aa나왔고 과탐가산점 없음 나만...
-
1황
-
자려 했는데 5판이나 했음뇨 어릴 때 주판으로 놀았던 게 도움이 되는 것 같기도..
-
나도 자러감 6
12시 전에는 일어날게 응
-
진짜잘게요 6
바이바이
-
유설, 장카로 나눠야 한다고 봄
-
워딩이 헷갈리잖아 인정하죠
-
오늘은 더 안풀어야지
-
이거 때문에 생활패턴 망햇어 세안하기 귀찮단말야..
-
얼버?기? 3
-
확통은 도저히 가오상해서 못하겠더라
-
역시 선택을 잘햇어
-
하이머딩거가 된거같애
-
"경대의대가서 뭐할라꼬 거까지 가노 마. . . 가까운 붓싼대 가서 마 니...
캬
다른 곳에서 올려주셨던 9번짜리 문제중에 수학2 문제만 모으신건가요?
다는 아니고 좀 풀만한 문제들을 모았습니다!
근데 설맞이 N제 문제 제작한 분이신가요..??
저랑 설맞이랑은 전혀 관련 없습니다ㄷㄷ
표지 디자인에 설맞이 적혀있어서 물어봣어요
2468문제인줄 ㄷㄷ
1357님?
요거 답지는 없나요??11번 답이 안 나오는데 아무나 풀어주실 수 있나요..?
지나가다 답글 남겨요! f(x)와 tf(t) 간 교점의 개수가 t가 0과 3일 때 불연속이라고 하였으니
tf(t)라는 곱함수에 대해 살펴보아야 하는데 t는 0보다 작을 때, 0보다 클 때는 양수이니 t값을 이용하여 불연속점을 특정할 수 있는데, t가 0일 때 불연속이 되기 위해서는 x축 위에서 중근을 가져야 해요!(t(t)가 0이라 그렇습니다
f(x)가 중근을 가진다는 것을 알았으니 이를 이용하여 불연속점을 하나 더 구하자면 f(x)의 함숫값이 0보다 크거가 같다는 것을 이용하여 3에서 불연속이라는 뜻은 x가 3에서 중근을 가진다는 것을 알 수 있어요!(불연속이 되기 위해서 tf(t)의 값이 0을 찍는 지점이 있어야 하는데 f(x)는 중근을 가지므로 불연속지점인 x=3이 f(x)의 중근이 됩니다)
a(x-3)^2에다가 함숫값 조건 대입하여 구하고자 하는 것 풀어내면 답은 16으로 나옵니다!
엇 이제 봤네요 감사합니다!!