지인선x이로운 모의고사(공통,확통,미적) 풀이 (링크)
https://cafe.naver.com/pnmath/3469790 (문제배포 원문 링크, 회원가입 필요)
https://cafe.naver.com/pnmath/3464347 (제작자의 저작권 관련 유의사항 및 시험지 컨셉 안내)
운 좋게도 지인선x이로운 모의고사를 배포 전에 풀어볼 기회가 있었습니다.
시간을 재고 풀어보고 그 풀이를 출제자께 제출하였고
배포 전까지 시간이 넉넉해서 몇 문항들에 대해 물어뜯어볼 시간도 충분해서
실전풀이에 생략된 내용이나 추가할 내용들을 영상으로 제작할까 하다가
손풀이 형식으로 써 내려갔습니다.
다양한 풀이를 열어두셨다는 출제자의 말씀에 제 실전풀이와 다른 방향의 풀이들도 고려해서 적어두었습니다.
문제를 풀어보신 분들은 맞추신 문제들도 한번 살펴보시면 도움이 될까 싶어서 공유합니다.
두 링크를 모두 보시면 좋을 것 같습니다.
https://cafe.naver.com/pnmath/3470040 (배포전 풀었던 실전풀이)
https://cafe.naver.com/pnmath/3470690 (실전풀이에 생략된 내용들을 적어둔 손풀이)
4개의 링크 중 문제배포 링크를 제외한 나머지 링크는 회원가입 없이도 볼수 있도록 열려있습니다.
부족한 부분은 이 게시물이나 해당 링크의 게시물에 댓글로 달아주십시오.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
연고공 인설약 1
연대 고대 공대 vs 이대 약대 동국대 약대 입결 상관 없이 미래 전망이나 전체적인...
-
원원시절에 평가원 과탐 고정 11이었는데 이번에 투투로 바꾸고 깨질 듯
-
성적공개좀 빨리하라고 ㅋㅋㅋ
-
시대 통계 들고 있는 물공이 제일 정확할거라고 생각함. 걍 1컷 아무리 높아봐야...
-
실력이부족한데엄한사람한테욕질이야 라는 나쁜 말은 ㄴㄴ
-
칸타타가 싫은게 아니라 그사람을 미친듯이 빨아재끼고 숭배하는 ㅡ_ㅡ <ㅡ이새끼때문임
-
등급컷 질문 2
확통 공통틀 선택틀 중 뭐가 유리한가요?
-
100 97 1 98 미적 88이라 96 or 97입니다 (97 소망ㅠ)
-
이제 4명 남았군요.
-
통계상으로도 그건 진짜 말이 안되는수치임 생각해보셈 이번수능이 정답률이 6모보단...
-
곧 한국도 올라오겠다
-
칸타타 2
레쓰비 티오피
-
사수생 2
있냐?
-
생윤 VS 정법 10
미필5수 지사약따리한테 과목별 특징좀 알려주세요....
-
등교 기념 하교 6
개빡쳐서 하교하는 건 아니고 논술 준비 땜에 이번 주는 쌤과의 합의 하에 무단 조퇴 중
-
최저걸린애들처럼 간절한 친구들이 있는데 만점이 3천명이 넘을수있다느니 1컷 88인거...
-
학교가어지러워 2
애기현역이 수능 거하게 말아먹고 논술, 재수준비하는데 어제 뒤에선 애들 막 열세명쯤...
-
ㅇㅇ
-
탐구표점 0
님들 과탐이랑 사탐이 표점이 같으면 메디컬 가는데에 문제 없음?
-
공부해야할 거나 하면 좋은 거 있나요??
-
올해 데뷔해서 평이 별로 없는데 수학 김범찬샘 수강생들 평이 어떤가요
-
하면 어쩌자는 거야 이 미친 학교야
-
2월에 열리나
-
텔그 괜히샀나 2
가독성좋아서 샀는데 표본이적어서 의미가 없는느낌
-
공통 2틀 92면 2뜬다고 보는게 맞겠죠? 메가에선 백분위 96이라고 하긴하는데
-
연고대 이상만 나는거 아닌가요?
-
나 같이 착한사람은 저격글 쓸게없군
-
수능이 끝나니까 2
확실히 더 많이 싸우는듯
-
잘잘못 떠나서 깡계로 저격하면 안되지 서로의 옯생을 건 캐삭빵을 떠야 그게 찐인건데
-
얼버기 2
일어나자마자
-
사실 읽기귀찮아서 그냥 팝콘 뜯는 이모티콘만 누르는중 뭐가 문젠지는 몰라용 ㅋㅋㅋ...
-
허수 최저러라 수학에서 깔끔하게 손 놓고 영어랑 과탐으로 맞춤..ㅋㅋㅋㅋㅋㅋ.....
-
상쾌한 얼버기 16
Happy
-
절대이애니를봐선안돼 11
반드시 보라는 뜻
-
자기는 남이 레트로트 데워서 판다고 욕하면서 나는 직접 재료 사서 조리한다고...
-
더 해라
-
영어공부중 2
티원 조마쉬 입장문 읽는중인데 그냥 상황이 ㅈㄴ 이상하네 뭐냐
-
그냥 그런생각이 듬
-
밥먹고 운동가야징 12
가자가자
-
정말 오랜만에 수능판에 들어온 20대 중반입니다. 이번에 과탐 화생을 보고 답이...
-
작년기준으로 보통 몇월정도 되야 업로드가 시작되나요?
-
ㅜㅜ 주작러는 박제해야지...
-
우선 시작하기 전에 한마디 입시커뮤 주작의 역사는 반복된다. 입시끝내기님...
-
아기 현역 달린다
-
기상 완료 오늘도 ㅍㅇㅌ
-
ㅎㅇ 3
기상완료
-
얼버기 2
-
잠 다깸 4
어제너무 일찍잣나
-
무빙 답답해서 숏 사고 자고일어났는데 이게 되네
28번에서 g를 f의 접선의 x절편의 역함수라고 두고 고민하다가 포기했는데 그냥 계산문제였군요…ㅋㅋ
미적분에서 함수 개형을 추론해야하는지 그냥 계산으로 뚫어야하는지 매번 포인트를 잘못 잡아서 틀리는거 같은데 양치기로 해결이 되려나요…? ㅠㅠ
저도 매번 같은 고민을 하는 것 같아요. ㅎㅎ;
개형 추론을 더 우선시 하고 접근하는 편인데 뭔가 케이스가 많아질 것 같다 싶으면
바로 식으로 접근하기로 돌려버리는 중인데
좀 더 실력이 늘면 그런 것들을 잘 구분할 수 있을까 싶고..
오 고수님도 마냥 수월하지만은 않군요… 위로가 되네요!