경제학과와 과탐의 연관성(경험에 비추어)
최근 이공계열의 학생들의 경제학과 진학이 부쩍 많아진 것 같습니다.
저 또한, 과거 이과 학생이었고, 물리1 화학2 수능 응시 후 대학에 진학한 학생입니다.
많은 학생들이 과학탐구를 공부하였던 것이 아깝기도 하고, 경제학과 기존 이과공부의 차이에 대해 많은 거부감? 혹은 공포감을 가지고 있을 것이라고 생각합니다.
하지만, 제가 경험한 결과 학문이라는 것이 많이 연결되어있고, 저는 물리1 화학2 과목에서 공부했던것과 유사점을 많이 찾을 수 있었습니다.
우선 미시경제학 파트의 일반균형 파트에 대해서 간략하게 말씀드려 보겠습니다.
경제학에서 일반균형이라 하면, 모든 소비자가 예산제약하에 효용이 극대화 되는 상품묶음을 선택하고, 모든 기업은 주어진 여건 하에서 이윤을 극대화하며, 소비자가 원하는 만큼 생산요소를 공급하고, 상품시장과 생산요소시장의 수요와 공급이 일치하는 균형점을 의미합니다.
이때 생산은 잠깐 제외하고, 순수 교환시장에서만 생각해 볼 경우
이때 소비자간의 계약 가능점들을 이은것을 에지워즈 박스(위 그림입니다.) 계약곡선이라고 부릅니다.
이때 우리는 최적의 균형점을 찾기위해서 '미분'을 사용합니다.
보통 물리에서 미분은 속도를 미분하여 가속도를 구할때 사용합니다. 마찬가지로 경제학에서는 효용의 변화량 즉 한계효용을 구하기 위해서 미분을 사용합니다. 우리가 물리, 수학에서 공부하였듯 미분은 '변화량'개념이기 때문입니다. 이를 통해서 A를 한개 얻었을때의 한계효용, B를 한개 얻었을 떄의 한계효용 등을 구하기 위해서죠.
그리고 이 균형점은 각 소비자들의 A, B 상품의 한계효용비가 일치할때 이뤄 집니다.
즉, 다르게 설명하면, 서로 다른 두 소비자들의 각각의 물건의 가속도가 일치할때가 최적이라는 뜻이 됩니다.
이를 화학2에서 배우는 화학반응식 적으로 설명하자면, 화학식에서의 우변과 좌변의 반응 속도가 일치할 때라는 뜻 입니다. 즉 평형상수 개념이 떠오릅니다.
그런데 참 재밌습니다. 사람들간의 최적점이 평형상수라니 그러면 여기서 하나더 생각해 볼 수 있습니다.
각 사람들의 균형점을 평형상수라고 생각한다면, 각 사람들의 효용은 반응 속도라고 생각할수 있겠네?
놀랍게도 효용식이 유사한 면이 있습니다. 물론 모든 경제학적 함수를 이렇게 표현하진 않지만 가장 많이 사용되는 콥-더글라스 함수식을 보면,
와 같이 놀랍게도
와 매우 유사한 모습을 보여줍니다.
여기서 끝이 아닙니다. 경제학에서 많이 사용되는 생산함수, 즉 노동과 자본을 투입하여 얻어지는 산출물에 대한 함수는 콥 - 더글라스 생산함수로 표현되는데, 이는
진짜 놀랍도록, 화학 반응속도식과 똑같은 모습을 보여줍니다. 문제를 해결하는 과정 또한 유사하구요.
이렇게 화학2와 연관되어있는 부분 말고도 경제학에는 과학적 사고방식과 연관되어있는 부분들이 많습니다.
예를 들면, 최근 가장 활발하게 연구되고있는 DSGE모형(동태확률 일반균형)은 미시적인 모든 사람들의 행동을 확률적으로 규정하고 이를 적분하여(쌓아올려) 거시적으로 경제적 동태를 예측합니다.
마치 양자역학에서 미시세계의 작은 원자의 행동들은 확률적으로 계산하고, 거시적인 현실세계에서의 움직임은 역학으로 구현해 내듯이요.
금융분야로 넘어간다면, 그 유명한 블랙숄즈 방정식이 브라운운동에서 차용된 식이라는 것 또한 유명합니다.
브라운 운동 공식
블랙 숄즈 공식입니다. 이처럼 물리학 또한 경제학에 영향이 많고 유사한점이 많다는 것을 알 수 있습니다.
이렇게 생각보다 학문들은 굉장히 유기적으로 연결되어있고, 사회과학에서 가장 수리적인 분야인 경제학은 그 영향을 가장 많이 받은 학문 중 하나입니다.
저처럼 물리1 2 화학1 2 까지 고교과정에서 모두 학습하였고, 순수 이과였지만, 경제학과에 관심이 생긴 학생들은, 이제것 배워왔던 공부의 아쉬움과 앞으로 전혀 다른것을 공부해야한다는 두려움이 있겠지만, 적어도 경제학에서는 그렇게 아쉬워 할 필요도, 두려워 할 필요도 없다는 것을 말씀드리고 싶습니다.
결국, 수능은 저희의 많은 지식을 테스트 하는 시험이 아니라, 수학능력 시험이며, 수리적, 과학적 사고방식은 어디든 활용 활 수 있는 좋은 무기입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
여대 가면 됨
-
책만 읽고 있음
-
ㄱㄱ 1-3 답만 틀리고 3-3못풂 2-3에 2e^3/4맞나
-
ㅈㄱㄴ
-
미적분들 어떠셨나요 삼각함수 덧셈법칙인가 그 sin(a+b)하는거 몰라서 30도...
-
흐흐
-
외대T3 0
영어 못하는데 한강작가여서 바로 해석했다 감사합니다
-
세종대 논술 1
어땠나여 논술 준비 1도 안하고 가서 쉬운건지 어려운건지 모으겟어요ㅜㅠ
-
진짜라고 해 줘... 여친은 됐고 그냥 인간관계만 맺을 수 있다면...
-
대머리 0
또리
-
또래가없음ㅇㅇ..
-
확통-7, 공통-12점 입니다. 백분위 몇 정도될까요?
-
점메추좀
-
점심 묵자 2
피자 묵자
-
23학년도 지구때 1등급 맞았는데 지금와서 지구하는건 어떤가요? 1
요즘 엄청 고였다길래 ㅠㅠ 군수생이라 더 고민이됩니다
-
3년
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
이렇게 풀었는데 답이없는데
-
7개월이
-
고등학교 온 후로 또래 중에 인사조차 할 수 있는 사람 하나 없음 진짜 뭐 나중에...
-
동덕여대 갈래 2
나도 같이 모두를 위해 싸울래
-
약대 한의대 노릴거면 사탐2개가 나을까요 사1과1이 나을까요? 3
군수생이라 과탐 2개는 차마 못할거같은데.. 추천부탁드려요
-
일단 탐구는 올해 입시결과 좀 보고 하고 영어,수학몰빵할듯
-
일부로 가서 경멸당하는 게 목적이 아닌 정상적인 남성들은 동덕대 절대 안가서 변태...
-
다들 왜 함?
-
얼버기 10
?
-
수리논술 오전입니다 1-1 91 1-2 270/7 --> 생각해보니 91을...
-
김범준 정병호 0
누구 들을지 고민됩니다ㅠㅠ
-
연대, 경희대, 외대, 이화여대, 건국대, 가천대 ex.) 서성한>=이대>=중앙대...
-
튀김찍여서
-
이번에 삼반수를 할 생각인데.. 될지 안될지는 모르지만 약대나 치대 목표로 하려구요...
-
서울 친구들보다 막차가 1시간 일찍 끊기는 경기도 외곽 시민은 서럽다...
-
현강추천좀 2
현강 국어 심찬우 or 심승리 수학 정병호 영어 이영수 ㅇㄸ? 생명 정석준 or...
-
42000원있네 깊티 받아도 까먹고 안 쓴단 말이지
-
종료 10분전에 꽉꽉 채우고 10분동안 검토하더라 대단하네
-
시험이 실제로는 어려웠어도 다들 할만했다, 대충 1개빼고 다 풀었다, 무난했다 이런...
-
귀여워 5
-
수능 등급컷 탐구가 메가에서보다 한등급씩 올랏는데 뭐가 정확한겨? ㅠ 백분위도 10퍼나 차이나..
-
나란 미친새끼
-
언제 뜰지 아시는 분 있으신가요 찾아봐도 안나오네요 인강 듣고 싶은게 있는데
-
볼펜으로 쓰라는 게 존나 에바임 문제3쓰는데다가 문제2풀고 ㅋㅋㅋㅋㅋ
-
너무 자세하게 쓰나..
-
지문 읽다보니까 '아 일본 얃옹들 중에 모자이크 삭제라고 하는것들이 이건갑네 ai로...
-
여기서 미분계수 정의 사용하면 f=2x로 나오는 것 같은데 이렇게는 못 푸나요?...
-
논술 잘하는사람들은 13
수능수학은 그냥 100받음? 아무리봐도 수능수학보다 논술이 훨씬 어려운것같은데
-
폐에 문제 있나 싶어서 사진도 찍었는데 문제 없다함 진짜 ㅁㅈㄷㄴ 단순히 건조해서 그런건가.....
-
얼버기 11
-
아무 의미 없는건가요?? 8ㅁ8...
-
ㅈㄱㄴ 올해 기하 어땠나요
인정.
오...그렇군요
수능 수학은 계산이상의 것을 요구하는 측면이 있어서 사실 대학 공학이나 경제학 공부의 경우
수학을 도구로 사용하기때문에 막 엄청난 수리적 능력을 요구하진 않습니다.
다만 수능 잘본 학생들이 보통 머리도 좋고 숫자도 친하니 잘할 가능성이 높을 뿐이죠
오펜하이머, 아인슈타인 등도 수학을 잘하긴 했지만 수학이 특기는 아니었습니다. 영화에서도 나오듯
"The important thing isn't can you read music, it's can you hear it. Can you hear the music, Robert?"
악보를 읽을 줄 알면 괜찮습니다.