복소수
1, 2, 3, ... 이러한 수들은 자연수(Natural number)입니다.
1보다 1만큼 작은 수는 0입니다.
0보다 1만큼 작은 수는 -1이며
-1보다 1만큼 작은 수는 -2입니다.
이렇게 ... , -2, -1, 0, 1, 2, ... 와 같은 수들은
정수(Integer)입니다.
그리고 두 정수 p, q를 활용하여
꼴로 나타내어지는 수는 유리수(Rational number)입니다.
이때 6/3=2와 같이 약분 시 정수가 되면 그것은 정수,
5/3와 같이 약분이 되지 않으면 그것은 정수가 아닌 유리수로
분류하곤 합니다.
그리고 루트2와 같이 q/p 꼴로 표현할 수 없는 수는
무리수(Irrational number)입니다.
유리수와 무리수를 통틀어 실수(Real number)라고 부릅니다.
그리고 이 실수에 제곱해서 -1이 되는 허수 단위(Imaginary unit)를 곱해
얻는 수를 허수(Imaginary number)라고 부릅니다.
그리고 실수와 허수의 합으로 이루어진 수를
복소수(Complex number)라고 합니다.
일반적으로 이 이차방정식의 해는 존재하지 않습니다.
하지만 해가 존재한다 가정하고 그것을 i라 정합시다.
이것이 허수 단위의 정의입니다.
그럼 이와 같은 생각이 가능합니다.
그래서 i를 루트-1이라 하냐 -루트-1이라 하냐
이야기가 나올 수 있는데 어느 쪽으로 생각하든
i를 통한 연산에는 변화가 없습니다.
그래서 보통 i=루트-1로 편하게 생각합니다.
허수는 bi 꼴입니다.
복소수는 a+bi 꼴입니다.
이러한 복소수를 우리는 복소평면(Complex plane) 상에
나타낼 수 있습니다.
평소에 접하는 직교좌표계 (Cartesian coordinate) 에서
x축을 실수축, y축을 허수축이라 생각할 때
x좌표는 실수 부분 a를, y좌표는 허수 부분 b를 설정해
점 (3, 5)와 같이 나타내는 것입니다.
후에 수학1 (2022 개정 교육과정부터는 대수) 에서 삼각함수를 배우거나
미적분 (고등학교 교육과정 밖) 에서 극 좌표계 (Polar coordinate) 를
배우시면 익숙해지실테지만 우리는 평면 상의 어떠한 점을
기준점으로부터의 거리와, 기준점과 점을 이은 선분이 기준선으로부터
시계반대방향으로 얼마나 회전하였는지를 기준으로
나타낼 수도 있습니다.
이런 식으로요!
우선 여기까지만 알아봅시다.
어떤 복소수 z의 켤레복소수는 허수 부분의 부호만 반대로
해준 복소수입니다. 다항식의 연산 공부할 때
덧셈, 뺄셈은 동류항끼리 해주었듯이
복소수의 연산도 덧셈, 뺄셈은 실수 부분끼리, 허수 부분끼리 해줍니다.
다항식의 연산 공부할 때 곱셈은 분배 법칙에 따라 해주었듯이
복소수의 연산도 곱셈은 분배 법칙에 따라 해줍니다.
(복소수에서도 교환, 결합, 분배법칙 성립합니다.)
무리수 배울 때 유리화 배웠듯이
복소수 배울 때도 유리화 합니다.
분모에 i가 보이면 합차 공식 적당히 집어넣어
보이지 않도록 해줍시다!
그리고 이러한 연산을 배우는데
"루트 안에 음수 있으면 i 활용해 빼준다"만 기억하시면 됩니다.
마찬가지로 "루트 안에 음수 있으면 i로 빼준다"만 기억하시면 됩니다.
이제 문제 두 개 풀어보겠습니다.
쎈 고등 수학(상) 1판6쇄 II-03 C단계 355번 변형입니다.
z_1, z_2는 복소수입니다.
따라서 a+bi 꼴로 나타내어 봅시다.
조건이 여러 가지 주어졌을 때는 하나씩 접근합니다.
먼저 A 조건부터 살펴보겠습니다.
미지수가 여러개일 때는 줄이는 것이 편합니다.
복잡한 세상 속 편하게 산다 생각하시면 됩니다.
따라서 A 조건으로부터는 다음의 정보들을 얻었습니다.
이제 B 조건을 살펴봅시다.
합차 공식으로 계산해주니 b=1입니다.
이때 a^2+b^2=4이므로 a=루트3 or a=-루트3입니다.
따라서 A, B 조건으로부터 다음의 정보를 얻었습니다.
이제 C 조건을 살펴봅시다.
a가 양수이므로 a=루트3임을 알 수 있습니다.
따라서 A, B, C 조건을 모두 고려하면 다음을 얻습니다.
이제 답을 내어줍시다!
답은 -4루트3 i 입니다.
다음 문제로 넘어가보도록 하겠습니다.
같은 문제집 361번 변형입니다.
뭔가 비슷한 것들끼리 있거나 거대한 것이 있을 때에는
치환해주면 좋습니다. 다양한 문자가 있지만 저는
정도의 대문자 X를 좋아합니다.
실제로 2022학년도 6월 미적분 30번을 현장에서 풀 때
alpha와 beta에 대해 정리해야할 식이 일치하기에
X로 치환하여 해결했던 기억이 있습니다.
그럼 다시 문제로 돌아와서...
함수 C(x)=1/x를 살펴볼 때 1이 방정식 C(x)=1의 유일한 해이므로
식을 한 번 정리해냈습니다.
다시 치환을 통해
식을 한 번 정리해내어줍니다.
이제 마지막입니다.
찐막~
따라서 방정식 C(B(A(A(x))))=1 의 해는 x=(1-루트3 i)/2임을
확인할 수 있었습니다.
p.s.
아까 직교좌표, 극좌표, 복소평면 등에 대한 이야기를 했었는데
r을 복소수의 absolute value 혹은 modulus라고 합니다.
대충 이런 느낌!
그리고 @를 복소수의 argument라고 합니다.
대충 이런 느낌입니다.
그리고 실수 x에 대한 항등식 Euler's formula도 알아두시면 좋습니다.
이를 이용하여
복소수를 위와 같이 표현해볼 수도 있습니다.
p.s.2
자연수, 정수, 유리수, 실수, 복소수에서 더 나아가
사원수(Quaternion)를 정의할 수 있습니다.
이렇게 생겼습니다. 1, i, j, k는 4차원 벡터공간의 기저 벡터입니다.
이라는데 저도 잘 모르겠습니다. 4차원 얘기 나오는 것으로 보아
사원수가 우리가 공부하는 수학에서 등장하진 않을 것이고
순수 수학(Pure mathematics) 쪽에서 쓰일 것임을
짐작해볼 수 있습니다. 실제로 그러한 것으로 알고 있습니다.
왠지 외적에서 등장하는, 3차원 공간의 단위 벡터 i, j, k와도
연관이 있어 보이는데 이는 저도 잘 모르겠으니
더 공부해서 오겠습니다!!
2022 개정 교육과정으로 고1 수학에 행렬이 들어왔으니
2028 개정 교육과정 정도에는 외적, 공간벡터, 입실론-델타 논법,
다변수함수의 미적분 (편미분, 중적분) 도 기대할 수 있지 않을까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아주대 변표 이거 10
탐잘이 유리함? 탐망이 유리함? 사탐이긴한데
-
외훌이 되어보자
-
인생최대의고민 0
숭실대 자유전공 가서 컴퓨터학부 동국대 경영정보 + 컴공 복전 어딜가든 나는...
-
사탐은 80명이 공부안하고 내리고 과탐은 60명이 공부안하고 내려서 과탐은 책한번...
-
현우진 선생님 5
현우진 선생님 강의하실때 존댓말도 하시고 반말도 하시고 반존대 하시는거 왤케...
-
14시 부터 접속 테스트가 가능하다고 안내 메세지를 받았는데 사이트에 접속해 보니...
-
둘 다 적정권이고 둘 다 나군이라 하나만 써야해요. 전 간판 더 높은 외대 쓰려고...
-
도일이 시절엔 자기 썸녀 아빠가 일 잘 안된다하는데 너네아빠는 실력이부족해서그렇징...
-
고대 추합 ㅇㄷ 0
3차 추합 몇명 됐는지 안 올라오네. 전전에서 2차 추합 때 예비 6번인데 속이 타네 하…
-
이번에 중대 상경계 논술 합격하신분들 수리문제 (3번) 답 맞으셨나요? 7/13으로...
-
개인전 참전 0
팀은 개뿔 피 튀기는 대입에서는 죽거나 죽이거나야
-
경영 아닌거 잘 커버하도록 면접만 잘보면 경영 경제 아니여도 과 때문에 금융사기업 못갈 일은 안생김
-
수능 수학 잘하기 모든 의논 무저건 다붙을수잇을정도 vs 수능 국어황 무슨 시험이...
-
이제공부밖에업서 9
노는건 긑난것이야...아마도
-
심심하구나 0
게임도 재미없고 고대 변표는 내일 나올라나
-
국수나보다안나왔는데 좋은대학가면화남 근데사실 걍나보다좋은대학가면 그냥다화남
-
해본사람만 암 ㄹㅇ
-
아니 뭐지 아주대 계산기 떴다 해가지고 해봤는데 왜 나는 40점이 떨어졌냐 ㅆ.....
-
32명 뽑는데 진학사 표본이 195명 진학사 기준 50명까지 추합권인데 저는...
-
진학사 기준 작년 추합 마지막이 84.8인데 제가 82.8이거든요? 근데 5칸...
-
갖고 노냐? 낙지 새키야?
-
영어 2라 연대 지르긴 글렀고 사탐하나 망하니까 고대가 멀어지네요 내년에는 영어와...
-
이거 불변임? 5
물변인가
-
어떻게 하는거임 텔그 반영됐나?
-
물론 아는 건 별로 업서요
-
연을건단 의대 3
지사의중에 상위권 지사의라 불리는 이유가 뭔가요?? 연을건단 의대면 전체 의대중에서 중위권인거겠죠?
-
165번 딸깍 감사히 잘쓰겟습니다
-
약속의 10분전 0
표준 ㄱㄱ혓
-
냐옹 9
야옹
-
의심과 집착 2
시작
-
내가 아무리 내신 끝나고 하루에 오르비 세시간 디시 두시간하는 커뮤창이 되었다고...
-
성대 공대에 대해 무물 11
2학년이라 아는것은 적지만.. 아는한에서 답해드려요
-
그냥 깝치지 말고 경희높높공 쓰고 혼자서 서양윤리학사 읽을게요
-
캐르릉 5
캐릉캐릉
-
ㄹㅇ로 설경이면 한국경제의버팀목이아닐까
-
수상은 고1모고 2 중반..? 떳는데 지금 다 까먹었고 너무 안한지 오래라 수하는...
-
혼밥이 뭐가 무섭노?
-
설자전이랑 연치중에 입결 높은 쪽 가는 게 후회를 조금 할 것 같아서.. 뭔가...
-
수학의 정석은 정확히 뭔 교재임여? 언제 보면 좋은 교재죠? 개념 복습?
-
아무리 과 차이나도 두급간 차이면 연고 고르나요 다들??
-
예비1떨당했네 1
에휴 시발 내가 그렇게 잘못살았니 ㄹㅇ 하나남았는데 마지막 희망을 싹 가져가버리네...
-
50점이 올랐는데...? 머지 가산점 때문인가?
-
잘 시간이네요 3
님들도 잘 자요
-
트리 써주세요 0
https://colormytree.me/2024/01JFJ419R2VX14KEVGC95V19V0
-
ㅈ된거맞지
-
풀화님의 트리에 메시지를 남겨주세요! #내트리를꾸며줘...
-
혼자만 알고잇지 마시고 알려주세요
-
쌍사 김종웅vs권용기 16
몰래 무휴반할 계획이라 지갑사정때문에 ebsi 생각했는데 얼떨결에 메가 대성 들을...
선샌님..어지러워요멋있어요
예비고1 과외 하게 되어서 수학(상) 복습 중에 있습니다,, 제곱근 연산 부분에 부호 오류 있어서 얼른 수정했네요! 시간이 늦었는데 좋은 밤 보내시기 바랍니다.
어우 샘 멋있어요 과외준비 아주 철저하시고 번창하십시오 ㅎㅎ