[자작문제] 수2-숫자감각
정수론은 아니고 적분상수 구할 때 숫자감각이 필요해요
0 XDK (+50)
-
50
-
카톡 운영정책이 너무 싫어서 카톡 탈퇴해버림.. 카톡계정자체가 없음 메세지로도...
-
내 오랜 꿈이다... 어쩌다가 이렇게 됐는지
-
3박4일이라는데 이게 맞나요... 부모님도 이거땜에 싸우던데 하...
-
사라질 직종이 어떤 것일까는 정확히 예측 불가능한거임?
-
표지의 상징은 희망입니다. ㅎㅎ 실제책 내지는 맛보기와 달리 표지와 비슷한 색으로...
-
얘들아 @@이 야한게임한대~
-
에 대해서 1년전쯤 학부생수준에서 자필로 규명해놓았던 자료를 공유합니다 ㅇㅇ...
-
아가기상 11
우웅
-
세계관 재정립 4
공허참에 의하면 전건이 거짓이면 명제가 참이다 p->q 에서 p가 거짓이면...
-
피램 화작 보는데 글씨가 많이 작긴하네 그냥 뽑아서 풀어야하나
-
자이 고난도나 마더텅 고난도, 이투스 15분 킬러 다 풀어봤는데 좀 쉽더라구요 현재...
-
지방교대에용 점공률 42즈음이고 작년에 예비 50까진가 돈거같은데
-
두 줄이네요 17
독감이
-
외로움 이런거 말고 학점에서 불리함 등등
-
‘시험 난이도 함부로 예단하기’ 이거같음 내가 그러다가 망했거든..
-
혹시 695.49 점공 몇등인지 봐주실 분 계신가요? 만덕 사례해드려요
-
입결은 연>>>경희지만 사회나가면 어디가 더 유리할까요..? 취업 잘되는건...
-
여캐일러 투척 8
화2 정복 3일차
-
많이 별로임? 법무사+세무사 둘 다 있으면?
-
어르신 조은 하루 보내세연
-
신성규쌤 유튜브 해설 영상 다 내려간 거 아쉽네.. 0
거기서 진짜 많이 배웠는데 개인적으로 D=0 풀이 <--이게 가장 기억에 남음.
-
https://orbi.kr/5a5e99f2-422f-4155-a246-ee5065b...
-
??
-
션티 홍보 0
키싱앱 너무 굿
-
너무 막바지에 있어서 무서운데 추합도 많이 안 돌 것 같아서...
-
ㅋㅋㅋㅋㅋㅋㅋ아 설윤교로결정햇다고 글을 썼네….사범 안 썼습니당 (╹◡╹)
-
근데 교육청은 대체적으로 계산량이 좀 있는거 거 같음
-
멘사코리아 직접 가서 iq테스트 해보신 분 있어요?? 17
멘사코리아에서 주최하는 멘사테스트를 쳐볼까 하는데 (25년 일정은 아직 안 나옴)...
-
단어가 개어렵네 0
영어 고1에서 고2모고로 올라오니 단어가 진짜 개어려운데 단어부터 외우고 오는게 맞으려나
-
이제 빨뻗고 똥글 쓰자
-
철학의 본질이 인간의 존재에 대한 질문과 탐구라면 신화는 가장 오랜시간 이어져...
-
농협 하나로마트 만세
-
내가 미안해 빨리 돌아와줘
-
초염몽 원톱으로 스토리 밀었어서 갸라도스 <<< 이새기 진짜 통곡의 벽이였는데 이...
-
작년엔 가천대도 못붙었는데 그래도 올해는 숭실 동국 홍익넣고 원서생각하면서 기다리는...
-
붙나요? 윗순위라 궁금합니다
-
킁 개 좋네 5
캬
-
영어 기출문제집 0
영어 기출문제집중에 3,4,7,10모만 다루는 문제집 없을까요?
-
무슨 2월까지기다려어엉ㅇㅇ엉ㅇ어어엉ㅇㅇ
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 1
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
무서운 이야기 4
오르비에는 가끔 온갖 분야를 꿰고 설교까지 하는 전문가분들(학부1학년, 대학입학전)이 나타난다
-
스텝0 전 단원 다 풀고 스텝1? 아니면 단원별로 스텝0 스텝1?
-
반도체관련 취직하려면 어디가 좋나요
-
얼버기 2
버기
-
얼버기 7
갓생 2일차
-
꾸중글 0
꾸중꾸주ㅇ
-
커뮤에서 활동하는 컨설턴트는 수두룩빽빽인데 왜 자기네 컨설팅 불호후기나...
-
로스쿨 왜 가냐 3
변호사 인구 ㅈㄴ많은데 돈도 요즘 ㅈㄴ 못 번다는데 워라벨도 죽었고 그 노력에...
서로 다른 네 근 -> 서로 다른 네 실근
이 정도는 알아서 봐주겠지
f'(k)는 삼차식이기 때문에 방정식에서 근이 4개가 나올 수 없지 않나요?
f(x)근개수가 4개에요
방정식이라고 나와있어 함부로 적분할 수 없는거 아닌가요..? 오랜만에 문제 봐서 헷갈리네요ㅠㅠ
무슨말인지 잘 모르겠는데 f(x)자체는 함수로 정의돼있어서 상관없지 않을까요
f'(x)가 오른쪽 식이랑 다르다면 방정식을 풀어야하는데 f'(k)=오른쪽 식이라면 근은 f(k)=0일 때가 되죠
좌변과 우변이 항등식이라면 (k의 값에 관계 없이 같은 식이라면) 적분을 해도 좌변과 우변이 같을 수 있습니다
하지만 좌변과 우변이 방정식이라면 (좌변과 우변이 같도록 하는 k의 값을 찾아야 하는 식이라면) 적분을 했을 때 원래의 식과 다른 해가 나올 수 있다고 배웠어요
최대한 기억나는대로 썼는데 제가 틀렸나요..?
f(k=0일때만 근을 가질 수있는 가능성이 있는데 f’(k)=3차식 방정식에서 근이 4개가 나오려면 일단 f(k)=0일 때 모두 저 식을 만족시켜야합니다. 그런데 님 말대로 3차식은 근이 4개가 될수가 없습니다. 그러면 항등식일 수 밖에 없습니다 (점 4개가 정해졌으므로). 그래서 f’(k)=가조건 우변 이됩니다.
그럼 근이 무수히 많은게 되는거 아닌가요 가조건 뭔가 이상한데
극한식이니 f(k)=0도 만족시켜야함요
아니요, f(k)=0이 아니라면 극한식이 발산하므로 무수히 많을 수 없습니다. f(k)=0이 아니라면 미분하는 식이 아니라는걸 기억해야합니다
적분하신다는게 무슨말씀이죠??
저 방정식의 해는 f(k)=0이면서
f'(k)=오른쪽 식인 k값인데, 만약 f'(k)랑 오른쪽 식이 같지 않으면 f'(k)=오른쪽 식이란 거에서 이미 근이 4개 미만으로 나오니 f'(k)=오른쪽 식(이거는 이제 모든 k에 대해 만족하고)을 제외하고 f(k)=0인 게 근이 되는 거예요
아! 이렇게 분리해서 보니 이해가 됐네요..
f(k)=0과 f'(k)=삼차식을 만족시키는 k값의 교집합의 원소의 개수가 4개이다 정도로 깔끔하게 정리되네요 아직 더 공부해야 할 것 같네요..ㅠㅠ
좋은 내용 배워갑니다 감사합니다!
아맞네 ㅋㅋ되송
K에대한 방정식
적분상수 그냥 0인것같은데
답 24인가
24 맞음 ㅇㅇ
저게 삼차식 이슈가 아니라
걍 말 그대로 우변이 f를 미분한거임
실근이 4 개라는건 걍 f의 실근이 4개란 뜻
사실 저사람들 무슨말하는지 이해안가요
걍 단순하게 생각하면 될문젠디
fx의 실근이 4개인것에 더해서 원래 가조건은 방정식이라 바로 저게 f’(k)라고 둘수는 없고 삼차식=삼차식의 근이 4개라는 것에서 f’(k)에 대한 항등식이라는걸 떠올려내야 하지 않나요?
그런거같아요
가조건 저도 아니 삼차식인데 근이 4개가 어케 됨? 햇는데 그러므로 항등식이다 이 뜻이었군요;; 배워감
도함수를 저런식으로 줄수도 잇구나
답 24
적분했을때 4차항부터 1차항까지 계수보고 -1 0 1 때려넣어도 상쇄되겠다 싶어서 적분상수구했어요
4차함수 그래프에서 y=t와 만나는 근 간 간격이 같은 t는 하나밖에 없으므로 0으로 특정했구요
적분상수를 우변으로 넘겨 f(k)=-c라는 식을 만들었을 때 f(k)=0의 근이 -1,0,1,2라서 그냥 c는 0이구나 싶었습니다. 만약, f(k)=0의 근이 -1,0,1,2가 아니라서 (나)조건을 만족시키지 않는다면, c를 구하는 방법이 무엇인가요
아직 수2를 한 번 밖에 공부하지 않은 예비고2입니다...
적당한 수를 찍어야조 유일할 테니.
발산하는 극한이 방정식의 한 항으로서 존재할 수 있나요?
아니라면 (가) 조건에서 (좌변)이 수렴할 때만 논할 수 있으니 f(k)=0을 만족시키는 k값들만을 다루어야 하고
k에 대한 방정식 f'(k)=(우변)은 삼차방정식 혹은 이차방정식이기 때문에 최대 세 근을 지닐 수 있어 (중근 복셈, 허근 고려) 모순이지 않나 하는 생각