5월 수학 후기... 도와주세요
21, 22, 29, 30번 틀림
84점
대학 다니다가... 반수 하려고 합니다...
공통이 빡빡하네요... 수학 점수 올리고 싶습니다...
28번 답 개수로 맞추기... 시험 볼 때 엄청 어려웠는데 정답률 보니 19, 20번보다 높아서 당황했습니다.
저처럼 답개수로 푸신 분이 좀 있으신 것 같아요.
1등급 대 실력인 것 같긴 한데, 아직 84~92점 점수대 인 것 같습니다...
96점~100점 실력은 어떻게 해야 나오는 것 일까요?
어느 정도의 발상은 가능한데, 그 이후 조금 더 필요한 디테일한 풀이를 갈피를 못 잡는 것 같습니다...
밑에 풀이 보고 뭐가 문제인지 스캔 해주시면 감사하겠습니다.
현우진 선생님 식으로는 특수중에서 개특수만 고려하고 다른 특수의 케이스들을 고려하는데 까지 머리를 못 쓰는 것 같은데... 어떻게 하면 좋을까요?
5월 수학 시험 볼 때 한 풀이 내용 입니다.
1~8번 - 그냥 풀이.
9번 - a(n+1)-an = -4an (n>=2)로 풀이.
10번 - 속도가 계속 음수 / 음수 -> 양수 전환 되는걸로 두가지 잡고 그래프 그려 삼각형 넓이 더해서 풀이. (Case2에서 m=1 or m=8 나오지만 4/m이 2보다 작다를 기준으로 m이 2 이상이다.)
11번 - 우선 a1 > b1로 da < db 확인, a(m+1) < b(m+1) 만족하니 이 조건으로 풀이 시작. am=bm 식에서 공차 p, q로 각각 설정하고 둘을 빼면 5=(m-1)(p-q) 나오는데 p-q값이 공차가 정수인 두 등차수열 이므로 정수. m=6 도출. p-q=1 도출하여 풀이.
12번 - A의 x값 k로 설정, B는 k+2. f(x)-(1/2)x 0부터 k+2까지 적분해서 값 0. k+2로 식 묶어 낼 수 있음을 인지하고 묶어낸 뒤 60 곱해서 k값 도출하여 풀이.
13번 - 기출에서 봤듯이 그냥 점근선 b, 2^(a+3) + b 가 3b다. why? 3b에서 교점의 개수가 1개로 쭉 연속이 되야하기 때문에 점근선을 채워줘야... 풀이
14번 - f(k)=0, g(k)=0. g(t)=-tf'(t)+f(t). f(k)=0이면 tf'(t)에서 k=0 or f'(k)=0. 두가지 를 근거로 f(x)식 x(x-k)^2 설정. 6f(1)-2f'(1) = -1. f(x)에 식 대입해서 풀이. k값 도출 후 풀이
15번 - a4, a5 케이스를 1 and 4 , 2 and 3 놓고, 가능한 케이스가 2 and 3밖에 없음을 인지 후 수형도 그려서 풀이.
16~18번 - 그냥 풀이
19번 - n(A)=9 에서 양수 4개, 0 1개 캐치. 음수의 개수는 상관없음. n(B)=7 에서 음수 2개 추가 캐치. 최댓값이 되기 위해 가장 작은 음수인 -1, -2로 놓고, 양수 4개는 제일 큰 5, 4, 3, 2로 풀이.
20번 - (f차수)^2 = g차수 놓고, f와 g 차수를 1차 2차로 확정. 주어진 식에 2 대입하면 f(2)=g(2). 0 대입하면 g(0)=0. 주어진 극한식에서 분모->0이므로 g(1)=0. g(x) 2차, 근 두개, 주어진 식에서 계수 비교하여 식 도출. g(2)=-4 이므로 f(x)=a(x-2)-4 로 놓고, f-g가 (x-2)를 인수로 가지기 위해 f식 확정 후 극한 식 계산.
21번* - EC 연장선, OA 연장선 그려주고 원과 내접하는 직각삼각형 그려주고, CD값 4까지 찾은 후 각DCA를 a, 각CAD를 b로 놓고, 직각삼각형에서 원주각으로 풀려다가 갑자기 미적분 내용 되는거 같아서 길 못찾아서 포기
22번* - f가 항상 0 이상임을 캐치, g의 우미분계수가 항상 0이상임을 캐치. g그래프를 그려주고... h(x)를 a=-5/6으로 놓고 g가 불연속인 두곳에서 0으로 된다라고 풀이를 하니... h(3)이 음수인데 g(1)이 양수인 케이스가 나와서 뭐지...? -1/2와 -3/2가 위치가 왜이러지...? 하다가 포기
미적
23번~27번 - 그냥 풀이.
28번* - asinx, cosx 그래프 그려서 교점 찾고. 교점 찾은 후 그 x값 k로 설정 후 g(k)=0. k=b/2 구함. 그 이후 (나)에서 직접 계산하려 하다가, 뭔가 아닌거 같아서 부정적분으로 f*g=2F(x)+C로 놓고 풀이하려 하다가, 뭔가 아닌거 같아서 실근 하나 k, 나머지 실근 하나 π/4-k로 놓고 풀이 하려다가 실근이 2개가 아니면...? 하고 포기. 그런데 답 개수가 2가 없어서 2로 찍어서 맞음.
29*, 30번* - 건들다가 시간 없어서 포기...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
생기부 1학년때부터 기계공학과로 꽉꽉채웠고, 최저 3합7인데
-
수능이었어도 화작1컷 88뜰 시험인가요?? 연계공부를 안해서그런지 문학이 너무 빡빡하던데요…
-
아오 진짜 실모 대신 시간 맞춰서 기출푸는게 나으려나 1
물론 내가 못하는게 맞지만 묘하게 억까당하는 기분인걸
-
무섭다
-
근데 요즘 애들 문해력 낮아졌다면서 국어 수준이거 뭐냐 0
난이도랑 등급컷 왜이럼? 부풀리기 뉴스였냐고ㅋㅋㅋ
-
현실에서 저렇게 죽는다고 생각하면 많이 억울할 듯
-
얼버버버버기 0
불꽃모고 4회 적중예감 13회 국어 연계공부 사탐개념ㅂㅗㄱ습 을 공부할거임
-
사회지문 출제각인가...
-
상상 이감 1
이감은 항상 안정1컷인데 상상 시즌5 80점대 개꼬라박아요 어캄..? 이거ㅈ된건가요...
-
34번 5번 선지 응칠의 제안에 응오가 거부의 뜻을 보인 것은 성실한 농군으로 살기...
-
83점 밤새고 봤더니 처음으로 시간도 부족하고 정신없네 문학만 5개 틀리고 독서랑...
-
기울기 지점 1:2 안 쓰면 나가죽으란 심보로 보이는데 깡계산으로 푼 쌉실수들 계심?
-
Goat..
-
글 갈갈이 완료 0
다시 80개 미만으로 꾸준글까지 갈아버리면 3페이지 나오겠네
-
텍스트를 매개로 세상을 바라본다? 이런 말 하셨는데 정확하게 뭐라 말하셨는지 아시는 분 있나요??
-
운동하는데 방해된다
-
올해 더프는 난이도 상관없이 80점을 넘겨본적이 없네 ㅅㅂ 상성이 안맞는듯
-
고전 짤 1
오랜만에 보니까 재밌긴 하네요 ㅋㅋ
-
손가락걸기 1
어케함
-
문학은 걍 시밸럼임 해설지를 봐도 거지같음
-
얼버기 3
히히
-
문학 어려운 회차 좀 알려주라
-
하면 국수영은 점수만 뜨나요 등급도 같이 뜨나요?
-
오늘은 음력 10 10
-
다들 긴장 바짝하면서 공부할텐데 군바리는 혹한기 훈련 열심히 받으면서 응원할게요 화이팅이에요
-
기상!!!! 3
얼부기
-
독서 9:20 문학 9:47 화작 9:57 마킹하고 가채점표 작성 하니까 1초?...
-
강기분 수강중인데 (문학,독서) 같이 기출 병행하면서 들어야하나요 아니면 끝나고...
-
딱 90이긴하다만... 90점대를 이번에 처음 받아봐서 감회가 새롭군요
-
다들 수능 화이팅
-
반박하지마
-
미적기하랑 컷 똑같네 ㄷㄷㄷ
-
킬캠풀다우럿서 2
121314다막히고40분없어져서우럿서시발진짜좆같네
-
시간 갈수록 허수들 더욱더 사탐런하면서 과탐은 무한대로 고일거깉은뎅
-
6평은 풀건데 시간상 둘중 하나만 택해야될듯요 연계챙기기 vs 쉽더라됴 9평 점검
-
등급컷 있나여
-
논리적오류 찾아주세요 e^x가 항상양수인거빼곤 미적분 개념을 안쓰고풀어서 뭔가 찝찝해요..
-
진짜면 졸라 대단하네
-
댓글로 다른거 추천해주셔도 좋아요!
-
빠답 가지신 분 계실까용
-
2,4페에서 시즌2식 똥내가 난다.....
-
4번 연속 홀수인데 ㅅㅂ 마지막 수능은 짝수 나올 거 같음
-
그냥 국어 연계나 더 볼까
-
71시간 뒤에 올라올 글입니다.
-
5에서 1을 전부 맛보면서 지옥 체험하는중 요새는 3만 나오는데 망했다
-
늦잠 잤는데 0
꿈에서 뭔 시험봤는데 현대소설 이청준-가면의 꿈 나옴.. 어제 풀어서 그런가.....
-
통수칠거같음
-
앞으로도 쭉 다니게될 학교, 대학교 3,4학년들은 앞으로 다닐4년간 다닐...
-
6회는 좀 어려웟는대 8회는 쉽다쉬워(독서론 3번을 틀리며)
메인글에 작수백분위99가 어케풀었는지 생각의흐름 써놓은 손풀이 있는데 한번 비교해보시는것도 괜찮을거같아요
다시 한번 봐도 제가 틀렸거나 못 푼 문제들 외에는 다 거의 생각이 많이 유사한데, 그 틀린 문제들이 전부 고난이도 문제라서 이제 어떻게 그 벽을 좀 뚫어야 하나 싶어서 글 올려 봤습니다.
좋은 풀이 올려주셔서 감사합니다. 오답 다시 해보고 참고 하겠습니다.
내가 정확히 뭘쓸수있고 뭘쓸수없는지가 명확해지면 좋을거 같아요
28번도 결국 탄젠트 덧셈정리를 밖에 이용할게 없다라는 생각이 핵심이었죠