근의 분리 상위호환
과외준비를 하다가 이번 6모 15번과 작년 9모 13에가 어떤 관점이 동일하게 쓰인다는 것을 알았는데요,
특히 9모 13번을 이렇게 푸는 것은 처음 봤다고 하네요.
앞으로 근의분리는 쓰지 마세요. 오늘 알려드리는 이 방식이 근의 분리를 거의 완전히 대체할 수 있습니다
(글 맨 마지막에 조건 달아뒀습니다.)
사실 저는 그렇게 특이한 접근인지는 모르겠습니다. 수학(상)을 열심히 공부했다면 이게 가장 자연스러운 접근이죠. 아무튼 과외생을 보며 이걸 여러분께도 소개해드리면 나름 의미가 있겠다고 판단되어 글로 쓰게 되었습니다.
일단 이번 6모(2025학년도)입니다. 문제를 다 풀진 않을거고, 맨 마지막 부분만 볼게요. (나) 조건을 통해 k=2인 것까지 구한 상황입니다.
k=2니까 g(x)가 미분가능하려면 f(2)=2, f'(2)=2여야 합니다. 최고차항 계수가 1인것도 아니까, 문자 하나만 가지고 식을 세울 수 있습니다.
이렇게 말이죠.
(가) 조건에 의하면, 얘가 x가 2보다 큰 곳에서 항상 증가해야 합니다. 그럼 당연히 도함수 관찰을 해야겠죠.
아, 센스 있게 2만큼 왼쪽으로 평행이동해서 봐도 되는데(저도 풀 때 그렇게 했구요) 헷갈리는 독자도 있을 수 있기에 여기선 그대로 갈게요. 괜히 과정 추가하지 않겠습니다.
아무튼 미분해보겠습니다.
냅다 판별식 쓰면 안 된다는 것은 알고 계실겁니다.
함수가 x축과 두 번 만나지만 x가 2보다 클 때는 x축보다 위에 있을수도 있으니까요.
난 그냥 그렇게 해서 맞았는데? 하시는 분들은 운이 좋으신 겁니다. 이 문제에선 결국 그게 답이긴 하더라구요 ㅋㅋ
여기서 a 범위를 나눠서 푸는 분들도 있습니다.
그건 올바른 풀이지만, 완전히 상위호환인 다른 풀이가 있어요. 그걸 지금 알려드리겠습니다.
일단 부등식에서 모르는 문자가 있는 부분을 넘겨버립니다. 그 뒤에 기하적인 의미를 부여할겁니다.
왼쪽은 완벽하게 그릴 수 있는 이차함수고, 오른쪽은 (2,0)을 지나면서 a에 따라 기울기가 달라지는 직선이죠.
이때 “직선이 항상 이차함수보다 아래에 있어야 한다” 라고 해석해주시면 됩니다.
그럼 기울기가 점점 가파라지다가 딱 접하는 순간까지 가능하겠죠? 그때보다 기울기가 더 커지면 직선이 더 위에 있는 순간이 생깁니다.
반면 기울기가 음수라면 음의 무한대까지 계속 가능할 겁니다.
x가 2보다 큰 곳에서는 여전히 아래에 있기 때문이죠.
그럼 접하는 순간 계산해볼게요.
a는 플마 루트 6인데, 둘 중에서 우리가 원하는 순간은 -루트 6일겁니다. 그래야 빨간 직선의 기울기가 양수가 되기 때문이죠.
a의 범위는 -루트6보다 크다가 되겠네요.
2024년 9평 13번에도 이걸 적용해볼게요.
저도 이렇게 빨리 풀릴 줄 몰랐는데, 아주 빨리 풀 수 있습니다.
얘도 당연히 도함수를 관찰해야겠죠.
연두색 영역에 도함수가 그려져야 합니다. 파란색 함수처럼요.
반드시 (-1,0)을 지나야 하겠네요.
왼쪽 함수에 대입해봅니다.
b=2a-1이 나오겠네요.
도함수의 오른쪽부터 관찰해보겠습니다. 아까 했던 거 똑같이 할게요.
a범위 구했습니다.
왼쪽에서 새로 추가되는 조건은 없습니다. 이미 이 조건만으로도 왼쪽 구간 함수는
y절편이 양수고
(-1,0)을 지나므로
아까 말한 연두 구간에 그려집니다.
우리가 구해야 하는건 a+b의 최대최소 즉, 3a-1 의 최대최소값입니다. a 범위를 아니까 다 구한 셈이네요.
네 여기까지입니다.
부등식으로 인식한 뒤에 약간의 변형을 가해주어서 기하적으로 관찰하는 방법을 알려드렸습니다.
문자범위 나눠서 하는 것보다 훨씬 빠르고 실수 확률이 적은 풀이라 생각합니다.
한 마디 덧붙이자면, a로 묶인 부분이 기하적으로 깔끔하게 해석이 가능할 때 이 방식을 쓸 수 있습니다.
그럼 언제 깔끔한 해석이 불가할까요?
a의 계수가 이차도 있고.. 일차도 있고 이런 식으로 여러 개가 있다면 기하적 의미를 부여하기 힘들 겁니다.
즉 문자 계수가 하나로 한정된 상황에서는
이 방식이 근의 분리를 완전히 대체한다고 말할 수 있겠네요.
다음에 또 좋은 글로 찾아뵙겠습니다. 감사합니다.
0 XDK (+1,010)
-
1,000
-
10
-
ㅅㅂ 11덮이 2등급 블랭크?
-
총평 : 퀄리티는 전반적으로 ㄱㅊ다고 생각함. 70min 독서론 + 화작 14min...
-
혜윰 2-3 16
독서 - 8,12,13 문학 - 21 화작 - 42,43 독서 - 독서론이 왜이리...
-
28틀 28 계산 줄이는 방법을 생각못함 ㅋㅋ 시간부족으로 틀림 30도 계산 ㅈㄴ...
-
물론 선별만 본 거긴한데 굉장히 당황하게 하는 문제들이 좀 있는
-
무지성 정보공개청구넣어서 받아보기
-
다들 감기 조심 0
추워요 콜록콜록
-
에휴이 0
에휴이에휴이에휴이에휴이 학교학교학교학교 시건시간시간시간
-
진짜 아픈거 웬만해서 참는 편인데 오늘 아침에 ㄹㅈㄷ상태라 관독 잠깐 조퇴하고...
-
2026학년도는 오늘 기자회견보니 여야 모두가 바꾸는거 찬성하는거 같기도 올해가...
-
냥냥 오노추 9
요즘 스토리에 오노추 올리기에 재미들렷더
-
중독성 있다해서 안들을려고 악을 썼는데 편의점에서 들려주네 ㅅㅂ.. 그냥 술게임 리듬인데??
-
덕분에 눈호강 흐흐
-
진짜 대단한 분이네... 글 제목은 인생에서 대학이 중요한 이유인데 이 정도면 뭘...
-
이번 11덮 후기 10
점수) 언매 100 확통 92 영어 97 한국사 47 생윤 47 사문 47 언매...
-
저컷나올정도는 아닌거같은데
-
이게 무보 100이 나오네 화작도 틀릴만한거 하나두개 있었는데
-
어떤책이 좋으셨나요???
-
점수 잘 나오니까 기분 좋아
-
난이도 어때요?
-
파이 빠진거 맞나요
-
공간의 이동을 어디부분에서 알 수 잇나요?
-
감이 안 오는데 시그모 시즌4 13 14 각각 45 44인데 이정도면 1나오려나요
-
최근 평가원 기출 한 화차 뽑아서 풀고 이게ㅜ왜 정답이되고 오답이 되는지 노트에...
-
자본주의 사회에서 내 돈 내고 하겠다는데~ 이러는 글 볼 때마다 느끼는 건데...
-
왜 나한테 물어보는거임.. 정시 100%가즈아
-
그 피터싱어 본인등판 사건 어케됐나요? “부유한 국가의 모든 시민은 원조 대상에서...
-
아수라8주차 0
이제 d1풀엇는데 다른분들은 실모풀면서 아수라까지하고 연계랑 기출까지 다...
-
본인 오르비 가입 이유 26
애니 얘기 할려고.. 에타 애니게시판은 조용하고 다른사이트는 이상한 놈들이 많음
-
시그모 17회 4
47점 확실히 시즌3,4보다 난이도가 낮아진 느낌이 드네요 3,4는...
-
이감6-4 95 강대X 11회 92 강대X 최저점 갱신 그래도 국어는 좋아요
-
왜 21 28 의문사지???
-
6평 백분위 99 9평 백분위 93 사설 93~98 사이로 나오는데 수능날에는 또...
-
저는 현실적으로 다 못풀거같네요 ㅠ
-
尹 “유럽과 아시아에서 트럼프 당선 걱정했던 지도자 많아” 13
윤석열 대통령이 7일 도널드 트럼프 미 대통령 당선과 관련 “유럽과 아시아에서...
-
난이도 어떤가요?
-
ㅇㅇ
-
보정이긴한데 10덮 4,5떴다가 이번에 22뜸.....ㄹㅇ 한달내내 탐구랑 산거같음
-
밖에 추울것같은딩
-
15 27 28틀 89인데 15:과정 다 쉽게잡고도 마지막 계산에서 꼬여서 틀림...
-
일주일동안 뭐하는게 나음? 이감은 1회만 풀었고 이매진은 70지문 품
-
표점 달달할줄 알았는데 1컷 50이라 당황
-
난 겨울 좋아해 1
여러분은? 가을도 좋긴 한데 요즘 가을은 모르겠다
-
ㄷ선지 (ㄴ)이 75S에서 침강한 남극저층수의 T-S도 상 위치잖아요. 근데...
-
재종에다가 성적표 언제 나오는지 물어봤는데 수능 직전 멘탈관리 차원으로 채점을...
-
더 잘 볼 자신 있음? 갑자기 궁금해지네
-
저만 이런가요 그래서 독서에서 시간이 상당히 부족함
-
일부러 페이지수만 확인하고 지문 검토는 안하고 풀었는데 2페이지에다가 인문학을...
개추 눌렀다....
캬
일단 읽어보고 걔추
앞으로도 좋은 글 써볼게요 ㅎㅎ
ㄷㄷㄷ
갑종님이랑 생각이 거의 일치하는...
왜냐면 둘이 친구거등
저도 작년 9평 13번을 이렇게 푸는게 맞다고 생각했어서 근의 분리니 뭐니 말 많을때 잘 이해가 안되긴 했었어요
김현우 선생님이랑 완전히 똑같이 푸셨네요.. 칼럼 잘보고 갑니다!
15번 이거풀때 산술기하로 풀었는데 최솟값이라 풀린거겠죠
6평 말하시는거죠?
산술기하도 괜찮네요. 왜냐면 여러가지 조건이 딱 맞아 떨어져서 여기에 산술기하를 쓸 수 있습니다.
일단 x가 2보다 큰 부분을 봐야 하는데, 그게 x-2>0이어야 하는 산술기하 조건이랑 맞아떨어졌구요,
부등식에서 오른쪽 부분이 상수이기 때문에 최솟값만 보면 됩니다.
물론 좀 더 근본적으로는, 산술기하는 완전제곱식에서 나온 공식이기에 똑같다고 볼 수도 있지만
아무튼 아주 맘에드는 관점이네요!!
넹 6모 15번 x-2>0보다 큰상태여서 이거로 산술기하썼는데
해설강의같은거 보니까 다들 다르게풀어가지고 결국 똑같은이야기였네요
대범준 그래프 분리
첫 문제에서 a=±루트6 구하셨을 때 D/4 공식을 쓰셔는데, 미지수를 (x-2)로 해서 b'²-ac 로 바로 구하신건가요?
아! 근데 그렇게 해도 되는건가요? 제가 고1수학을 날림으로 배워서..
넵, 이해를 도울 수 있는 두 가지 관점을 소개해드리겠습니다
1. 평행이동.
x축과 만나지 않는 이차함수를 좌우로 평행이동해도 여전히 x축과 만나지 않는다. 따라서 해당 이차함수를 2만큼 왼쪽으로 이동시킨다면 3x제곱 +2ax+2이고, 여기에 판별식을 쓰면 된다.
2. 치환
x-2를 t라는 새로운 문자로 잡는다.
사실 1과 본질적으로 같다.
감사합니다!! 저는 x가 변수인 상황에서 판별식을 쓰는데, 2만큼 평행이동을 해도 똑같이 성립이 되는지 궁금했었는데 이해가 되네요! 정말 감사합니다 ㅎㅎ 덕분에 수준높은 풀이법 하나 배워갑니다 . 감사합니다!!
저도 굳이 근의 분리까지 안끌고가고 싶어서
저는 그냥 잘 모르겠으면 화끈하게 근의공식 때리고, 두 근이 모두 k보다 작아야한다면
D >=0인 경우, 그냥 더 큰 근이 k보다 작다! 라고 하게끔 가르쳤는데
기하학적인 풀이도 너무 좋은 듯 합니다 ㅎ
잘 보고 갑니다!
관찰중인 문자의 차수가 여러개가 아닌 이상 (예를 들면 식에 a도 있고 a제곱도 있는 경우), 위 기하적인 풀이가 근의 분리를 완전히 대체합니다
.
의견 공유 감사해요 ㅎㅎ
고정된 요소가 필요하다는 말씀 맞으실까요? 좋은 댓글 감사합니다 ㅎㅎ
오 이거 좋네요. 시간 단축 꿀일 듯.
+ 이번 6평 14번 부등식도, 부등식 여러개로 케이스 분류해서 끼워 맞추지 않고, 일차함수랑 이차함수 만나는 걸로 구할 수 있음!
정말감사합니다
오늘도 배워갑니다 감사합니다
많은 상황에서 상위 호환은 맞지만 계수의 꼴에 따라선 대체가 안 되는 경우도 있습니다!
(고정점 지나는 직선으로 해석이 안 되는 경우도 있음)
저도 위에 댓글에 달아놨는데, 그 경우에는 기하적 의미를 깔끔하게 부여할 수 없습니다
본문에도 추가해야겠네요
질질 쌌다.
미분을 활용하여 직선의 회전 이동을 관찰한다, 감사히 잘 읽었습니다!
좋은 글 감사합니다
선생님 진짜 미틴넘이시네요 미친초고수다