미분가능과 도함수연속성
일단 결론은 미분가능≠도함수연속 입니다
이 내용을 현행교육과정내에서 간단히 풀어내보겠습니다
미분가능하다의 정의는
1. 연속
2. 모든 실수 a에 대하여 가 존재(좌미분계수=우미분계수를 내포하는 내용)
사실 수능문제들에서 미분가능성을 따질때 정석적으로는 2번의 정의로 다 풀수있으나 실전성을 위해 첨점과 같은 내용으로 한눈에 파악하기도하죠
도함수가 연속이다의 정의는 그냥 일반적인 연속의정의인
를 확인해주면 됩니다
결국 도함수가 연속이면 미분가능함의 2번조건을 자동적으로 만족해줍니다
그럼 1번조건인 연속하다라는 어떻게할까요?
도함수의 정의자체가 원함수의 각 지점의 미분계수를 뜻하는것이기에 도함수가 연속이면 당연히 원함수도 연속입니다
(원함수가 불연속이면 도함수의 정의상 원함수가 불연속인 지점에서 정의되지않기때문에 도함수는 불연속이됩니다)
그러므로 도함수가 연속이면 미분가능합니다
하지만 첫 줄에서 말했듯
미분이 가능하다고 도함수가 연속인것은 아닙니다
미분가능해도 도함수가 불연속일 수 있다는거죠
왜 우리의 직관과는 달라보이는 이런일이 발생한걸까요?
그 이유는
일수도 있기 때문입니다
분명 미분계수의정의로든 로피탈로든 둘이 같다 생각해왔었는데 실은 다른경우도 있다는거죠
f(x)가 미분가능하다고 전제한다면 저 두식의 좌항은 서로 같겠지만 좌항과 우항이 다른경우가 있을수도 있어서 미분가능이 도함수의연속을 보장해주지 않습니다
그 예시는 밑에 보여드리겠습니다
다만 이런 경우는 적어도 구간별로 다르게 정의됐을때와 같은경우에나 발생하지 일반적인 미분가능한함수에서는 저 위에 두식에서 좌항과 우항이 같음이 성립하니 문제푸실때 이런경우를 너무 과도하게 생각하실필요는 없습니다
미분이 가능하지만 도함수는 불연속인 대표적인 예시이자 기출입니다
미분계수의 정의를 이용하면
이므로 미분이 가능함을 알 수 있습니다
하지만 이때 미분법을 이용해 도함수를 구해주면
이를 실제로 그려보면 도함수가 x=0 근방에서 미친듯이 진동하는것을 확인할수있습니다
결국
임을 확인할수있기에 미분이 가능해도 도함수는 연속이아닙니다
매번 주기적으로 불타는 주제이기에 한번 정리해보았습니다
사실 수능문제에서 그렇게 크리티컬하게 다뤄지는 내용도 아니고 교육과정내에서 완벽하게 증명이 된다고는 볼 수는 없긴합니다
도움이돼셨다면 좋아요를....!!
0 XDK (+5,100)
-
5,000
-
100
-
융합응용화학과 어떤가요? 신설과라 정보가 미흡해서.. 어렴풋이 듣기론 2년뒤에...
-
대구내 경북대나 부산내 부산대
-
. 4
-
입결마니 높을까요 부산대 자연과학(화학과 수학과…)정도 넣을만한 성적인데 넣어볼만할까여 ㅜ …ㅜ
-
용어도 ㅈㄴ많고 아 너무어려움 수능끝나니 댕청해진듯 그냥 땅바닥에 누워서 해줘하고...
-
야간알바특 0
마의 시간이 있음 그땐 시간 뒤지게안가다가 그 시간 지나면 개빨리 지나간다
-
나에게는 걸어놓는 대학일 뿐이지만 누군가에게는 정말가고싶고 붙으면 성불할곳인데 내가...
-
사문은 일단 베이스로 깔고 가려고 하고,, 나머지 하나를 뭘 해야할지 고민입니다ㅠㅠ...
-
https://orbi.kr/00070442895/진학사 보세유
-
ㅈㄱㄴ
-
예비번호 1
110명뽑는학과 예비 11번인데 추합 되겠죠? 지거국 자전입니다 그리고 예비빠지는거...
-
연대 펑크난다는 글 왜케 많노
-
포상금으로 교재비좀 아껴보자
-
포공 버리고 온다는 분이 마니 보이네 저랑 트레이드 하실 포공분 계신가여??
-
2025 독서,문학 다 들었는데 독서는 체화가 조금 덜 된 것 같아서 2026도...
-
홍익대 입결 12
작년보다 더 낮아질가능성은 업을까욤 ㅠ 홍대…우주상향으로 넣어보고시픈데…ㅠㅠ 홍대식...
-
지금 바로 2025 강의로 시작하는게 나을까요 아니면 조금 기다렸다가 2026 강의로 들을까요?
-
호떡 먹고싶어 2
근데호떡믹스사먹으면 가족이 다 털어갈 거야. 참어렵다
-
야!!!!!! 27
-
아연애하고싶네 4
ㄹㅇ이 크리스마스얼마안남앗다...........
-
ㅈㄱㄴ입니다. 상위권이 아니라서 뭐 예측 가능한 단계가 아닌데 뭘 어케 분석하라는지...
-
25년 11월30일까지 15만원에 메가패스 같이 들으실분 구합니당 궁금한건...
-
많이 다름?
-
반대로 생각해야함 영어1 사탐러들은 연대만 잘 뜰 것이고 여차해서 연대 떨어지면...
-
내년에 부산대 사탐 공대 제한 풀릴 가능성 어느정도임…? 11
사탐런치려고하는데... 집이 부산이라 이거 참 고민... 2025에는 과탐...
-
https://orbi.kr/00070612502#c_70619676 문제 원본...
-
빵먹고싶음
-
일단.. 저는 브크 3세대 듣고 있는데 브크 3세대에서는 기호화를 설명하시기보다는...
-
2025 독서,문학 다 들었는데 독서는 체화가 조금 덜 된 것 같아서 2026도...
-
김준vs고석용 2
고2 내신용으로 화1인강들으려는데 김준t랑 고석용t중에 어떤분이 더...
-
이거 신고넣고싶은데 어디에다 연락해야함?
-
배가 계속 아픈데 진짜 아빠한테 옮앗나
-
맞팔구 10
구구
-
이승모 유대종 이정환이라니 ㄷㄷ
-
전자일 경우 다른 곳에서 단과 2개 더 들을듯
-
혹시 몇칸정도 뜨시나요
-
메가스터디에서 답변해주는 온라인 조교는 그 선생님 강의 다 볼 수 있음?? 그리고...
-
내일월요일이라고 다들자러갔나
-
울산대 의대 예비no. 몇번까지 받았을까요..
-
서강대 붙을 예비인데 기다려야할까요??
-
공대 기준으로 인하 숭실 붙으면 ㅇㄷ감? 같은 과 기준
-
강민철 김승리 3
다른 과목은 인강 강사 다 정했는데 국어를 못정하겠어서 미치겠습니다. 제가 두분다...
-
어떻게 생각하면 되나요 수시 지역인재에 떨어진 애들은 당연 정시 지역인재에 쓸...
-
설카포 아닌가 19
왜 연전전이 포공과 선호도가 비슷하지
-
ㄱㅁ하나해봄 1
절대음감임
-
부산은 두번이나 갔다왔어예..
-
내 자존감 내려가네...
-
오르비끄고자자 2
-
고려대학교 사범대학 지리교육과에서 25학번 아기호랑이를 찾습니다!! 0
민족고대! 청년사대! 민중지교! 고려대학교 사범대학 지리교육과에서 25학번...
-
어떻게 버스 배차 간격이 20 30분 ㅋㅋㅋ
서로다르다는 기호를 어케쓰는지를 몰라서 ㅋㅋ...
양해부탁드립니당
도함수가 연속이면 미분가능 o
미분가능이면 도함수연속 x(반례) 이군요
반례가 어케되죠
도함수의 함숫값만 존재하면 되는거아님? 도함수의 극한값과는 관계없이 어차피 f'(a)라는 값만 보는거니까
감사합니다....안 그래도 제가 헛소릴 해서....깔끔하게 정리해주셨네요
도함수가 연속이면 미분가능이지만 그 역은 성립이 안 된다는 걸로 한 줄 정리가 되네요
!= 입니다
헛 감사합니다
호훈이 맨날 강조하는 거네
저도 이거 배웠는데 반례가 현행 교육과정에서는 힘들고 가형 30번에나 나올거같은 기괴한 함수여서 별로 상관 없는거같던데
저함수근데 교과서에 있음 ㅋㅋㅋ
수2범위 내에선 그냥 동치 맞죠?
ㅇ예
김기현 들으면 저거까지 다 증명 및 소개까지 다 해줌 아 ㅋㅋ
확통 선택자인데
역은 성립하지 않는다고 기억해두면 될까요?
유용한 글 감사합니다
도함수가 연속이면 미분가능하다
역은 성립하지않는다
도함수 말고 그냥 함수는
연속이라고 미분 가능한 함수가 아니고
미분이 가능하면 연속이라고 알고 있는데 헷갈리네요
확실하게 알아야겠어요
수분감 미적 스텝2에
"선생님 그럼 sin1/x는요? 말도 안되는 소리하지말고 " 한 5번쯤 나오는데 뭔소린지 몰랐는데
드디어 ㅋㅋ..
저거 강기원이 자주 얘기하는 함순데
팔 부르르 떨기 ㅋㅋㅋ
기구하다
N제에 비슷한 개념이 헷걸리는 문제가 있는데 그럼 f프라임의 극한값은 존재 하는데 함숫값과는 다른경우에도 미분 가능할 수 있겠죠 주어진 구간대로 함수를 미분해서 구하면 좌극한 우극한은 같은데 함숫값이 다른경우가 있더라고요
수2 n제인데 다시 보긴 해야되는데 기억상 이런 문제가 있더라고요
간단하게 변곡점의 미분계수가0인 삼차함수의 역함수를 생각해보면 됨 이 역함수의 변곡점의 미분계수는 정의 되지 않지만, 미분 가능임
이건 틀린말이지요 y=x^3의 삼차함수의 역함수는
0에서 미분가능하지않지만(평균변화율의 극한의 발산) 접선이 존재한다가 옳습니다
y평점은 미분도 불가능이에용
또 재밌는사실은
1. x->a로갈때 limf '이존재한다고 원함수가 연속이면 위 극한은 f '(a)라는 점
2.반대로 lim f '(좌우극한)이 존재하고 f '(a)도
존재한다면 이 둘은 다를 수 없다는 점
-->이게 누구나 떠올릴 수는 있지만 이러한 특성을 가진 도함수는 없다는 다르부의 논증이 있지요
도함수의 연속성에 대해서 이런 정리가 있더라구요!
다르부의 부르르함수
수분감에선 이거 고등과정에선 고려 안해도 된다고 들었는데 맞을까요..?
어디 기출이죠..?? 평교사엔 아직 없고 임용 기출로 알고있는데
의대논술
김범준이 도함수 극한 ㅈㄴ까던데 ㅋㅋ
간단하게 생각하면 도함수: 단일 극한, 도함수극한: 이중극한이니까 당연히 다르다고 볼 수 있죠
그리고 진동발산 말고도 x^(1/3) 같은 함수 이용하면 존재성의 문제가 아니라, 도함수 극한을 사용했을 때 '아예 다른 값'이 나오게도 할 수 있습니다 처음 보면 굉장한 충격이죠
궁금하신 분은 핀셋 n제 시즌2 미적분 23을 참조...
!=