물리학 1 18번, 20번 문항 풀이
본 게시글의 풀이는 2018, 2024 피직솔루션 내 비례식 원리를 따릅니다.
역학적 에너지 문항인데 저같은 경우에는 운동에너지, 위치에너지들을 비율로 나타내고
이 때 작성된 비례식 끼리의 비례 상수를 맞추는것을 좋아합니다.
비례 상수를 맞추기 위해 곱해주어야 하는 상수 k를 구해지는 방향으로 시선이 좁혀지다보니
무엇을 해야할 지 명확해지기 때문입니다.
간혹, 발문을 수식으로 표현했을 때 문항이 풀리지 않을 경우에는
문항 내에서 s=vt 꼴로 숨어있는 조건이 있는지 체크하기를 권장합니다.
대다수는 s=vt와 W=Fs를 분리된 유형으로 약간 본능처럼(?)느끼는데
그래서 에너지 문항이라는 생각을 하고 s=vt를 떠올리지 않는 경우 구렁텅이로 빠지는 경우가 많은것같습니다.
물체의 처음 위치와 최종 위치에서의 속력은 1:1이므로
운동에너지는 1:1입니다.
높이는 3:1이므로 퍼텐셜 에너지는 3:1이될것입니다.
그리고 물체가 마찰 구간 I, II에서 손실한 운동 에너지는 1:1로 동일하며
이 값은 q에서의 운동에너지의 2/3배이므로 문항에서 주어진 조건을 정리하면 다음과 같습니다.
처음, 나중 운동 에너지 = 1:1 (1)
처음, 나중 위치 에너지 = 3:1 (2)
손실 운동 에너지 = 2:2, q에서의 운동에너지 = 3 (3)
문항 내에서 주어진 조건을 정리해보니 위 세 비례식간의 비례상수를 맞춰주는것이 본 문항의 방향성인듯합니다.
비례식 (1), (2), (3)은 각각의 비례상수가 다르기 때문에 편의상 (3)을 기준으로 (1)과 (2)를 맞춰볼것입니다.
(3)에 의해 p에서의 운동에너지는 5이고 이는 손실량 2이 발생한 이후이므로
처음 역학적 에너지는 7, 나중 역학적 에너지는 3입니다.
처음, 나중 운동 에너지 = 1:1 (1)
처음, 나중 위치 에너지 = 3:1 (2)
(1)과 (2)를 조절하여 세로 합이 7, 3이 되어야하며(비례상수 일치)
각각 1, 2 를 곱해주면 됩니다. 따라서 정리하면 다음과 같습니다.
처음, 나중 운동 에너지 = 1:1
처음, 나중 위치 에너지 = 6:2
손실 운동 에너지 = 2:2, q에서의 운동에너지 = 3
마지막 지점의 에너지로 인하여 0.5mvv=mgh=1 입니다.
ㄱ. p에서 손실된 운동에너지 = 중력과 같은 크기의 힘이 한 일의 양 = 2 = mgh 이므로 d=h입니다.
ㄴ. 처음 운동에너지는 1, p에서 운동 에너지는 5이므로 속력은 1:5에 루트를 씌운 1:root5입니다.
ㄷ. I에서의 운동 에너지는 1+2, q에서 운동에너지는 1+2+2-2 으로 동일합니다.
문항내 조건을 문장별로 끊어 조건을 수식화 해봅시다.
발문 1 : q장력과 r장력은 3:2이다.
C가 정지했으니 장력은 각각 3mg, 2mg가 되어야겠습니다.
그러면 p장력도 3mg, A의 빗면 중력도 3mg가 되어야합니다.
발문 2 : r, p를 끊고나서 A, (B+C)의 가속도는 2:1이다 = 알짜힘비/질량비가 2:1이다.
= 3:1/질량비=2:1, 질량비 = 3:2 = 6m : 4m, B는 3m이됩니다.
발문 3 : r이 끊어진 순간부터 B가 O로 돌아오기까지 걸린 시간은 t0이다.
= B의 속력은 가속 운동의 대칭성으로 인하여
r이 끊어진 순간, O, 정지, O 순으로 0 v 0 v입니다.
여기서 포인트는 0-v구간과 v-v구간에서의 가속도 비 = 알짜힘비/질량비 = (2:1)/(10:4)=4:5이며
속도 변화 비는 1:2이므로 걸린 시간비는 (1:2)/(4:5)=5:8로 이 둘의 합이 t0입니다.
p가 끊어진 순간 O에서의 속력은 B의 속력이며
알짜힘 2mg에 의해 10m짜리 질량이 5t0/13 동안 가속된 속력입니다.
따라서 g/5에 5t0/13을 곱해주면 gt0/13이 됩니다.
간단하게 쓰면 알짜힘이 2:1/ 질량이 5:2에서 가속도비 4:5를 구하고
속력 변화가 v로 세번 일어나면 걸린 시간이 5 4 4 합 t0을하고
5/13에 가속도 1/5를 곱하는 방식이겠지만 그건 그래프가 머리속에 쏙쏙 그려지는 숙련자기준이구
정석적인 풀이 과정은 위에 풀어쓴것과 동일할것같습니다.
이런 풀이가 익숙해지면 나중엔 식 안쓰고 상수만 끄적대는 자신을 보게 될거에요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그냥 따라하기만 함
-
어디가 더 좋을까요? (참고. 한양대 전기는 전자공학이 아님)
-
얼버기 2
죠은 아침
-
ㅈㄱㄴ
-
새벽감성노래 1
이미새벽은지나갔지만
-
뭔가 위에 대학 이름이랑 같이 붙어있으면 너무 위에 쏠려있는 느낌서울대나 경희대처럼...
-
기상 완료 알바 가기 시러
-
진짜 인재 놓친거다.
-
오르비 망했나
-
이번수능 대충 언미영사문생1 23212 받았습니다 순수과학에 흥미가 생기기도했고,...
-
갈드컵 안열리네 예전에 이거갖고 말 엄청 많았던걸로 기억하는데
-
경북대 치대 논술 가야할까요??ㅠㅠ 지금 6칸입니다ㅠㅠ
-
삼반수 할까 2
작수 55332 올해 33231 흠
-
내신 대비로 어떤 문제집이 괜찮은가요???
-
어느길로갈까요 7
젤 무서운 길을 8분 정도 걸리고 가로등 없음... 다른 길은 15분에 가로등 몇개...
-
재수는 싫고 반수하면 놀다가 제대로 못할거같고 남은건 군수뿐인거같은데
-
집이드 편의점최고
-
문제집 분리수거 2
이번 수험기간동안 푼 문제집들 다 종이 버리는곳에 버리면 될까요? 스프링은 없어요
-
치감걸린듯 4
왜 힐이안되냐
-
기적의 수면패턴 3
8시수면 4시반기상 ㅋㅋ
-
알바 헬스 대학공부
-
처음부터 마지막까지 네 맘을 알고 싶은걸
-
반갑습니다. 10
-
아낌없이주는나무는이제없다..
-
전시즌 플레계정인데 랜만에 켜서 한판해서 첫판 이겼더니 실버 4를 주네
-
벌써 2028 수능 준비하는 사람 있음? 아는 08 지금 자퇴하고 2028 수능 준비하는데
-
이번 겨울부터 시대 라이브반 수강하려고하는데 언제쯤 개강하나요??
-
나도 그때까진 생지가 무슨 이과냐고 생각하면서 이과가 물화중 하나도 안 하는게...
-
방금 라면먹고 3
식은 밥말아먹는 중인데 살안찌겠죠? 오늘 아침안먹었고 점심 저녁만먹음 점심엔 떡볶이...
-
행렬 공간벡터 모비율의 추정 롤백시킨건 근본스러운데 3
행렬은 공통수학1에 있어서 간접 연계로 들어가는데 수학적 귀류법이나 순열처럼...
-
언 미 영 물1 지1 동대나 홍익대 공대는 가능할까요...?
-
지각안할라면넉넉히 6시50엔 일어나야하는데 ㅅㅂ오늘 ㅈㄴ쳐잣더니 잠안옴..ㅈ댬
-
기숙학원재수는 1년6개월동안 공부해야하고 기간동안 수능을 볼 수 없으며...
-
위치 신경안쓰고 학교 지원이나 아웃풋 측면에서만 ㅇㅇ 입시 커뮤 말고는 어떤 기준으로 알아봐야됨?
-
ㅏ 드디어 1
올 한해를 알차게 보내기 위한 인강 커리 N제들 계획을 다 세웠다 이대로만...
-
세종대 논술 0
보통 수학 몇등급대가 오나여? 미적 안한 기하러 합격 가능세계잇음?
-
07들에게 힘의 차이를 보여주기 위해
-
.
-
이새끼들 안죽냐 변기물로 익사시킴
-
긴장되네요.. 0
인생이 바뀌는 시험이라 그런지
-
올인원, 단어, 유형독해만 듣고 빈순삽은 교재없이 강의만 들어도 되나요? 목표는 2등급 이상입니다.
-
ㅈㄱㄴ 실모에요 N제에요?
-
이번에 보니까 호텔관광이랑 묶어서 계열로 뽑던데 2학기끝나고 전공 선택할때...
-
음..
-
의치한은 진짜 그런가요
-
계정은 남겨 두겠음
-
우울글 3
(반말주의) 사실 나는 의대가 너무 가고싶었다. 아니, 의사가 되고 싶었다는 말이...
-
은 없나여?
-
예비 고3인데 이 시점에 수 상하 복습해도 괨찮을까요… 4
초딩 때 수 상하 배우고 성적 개판 치다가 올해 시대 스파르타 다니면서...
-
고2까지 공부 던지고 펑@펑 놀기 고3때 공부 시작해서 재종 들어갈 성적 띄우기...
첫번째 댓글의 주인공이 되어보세요.