재밌는 문제 풀어보셈요(10.16)(1500덕)
간단한? 정수 문제입니다.
난이도 : 2.5/5
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
마땅한 소재가 없네
-
ㅅㅂㅋㅋㅋ
-
술 추천좀 3
뭐살까.
-
ㅈㄱㄴ
-
시간 왤케 빠른 거임
-
어차피 만날일도 없는데 그게 이득임ㅇㅇ
-
유리무리 고1학평 기출까지 안풀어봐도 되죠? 이차방정식이나 이차함수 원의방정식 함수...
-
문과 대학 라인 0
평백 85.5에 영어 3인데 이거 어디가냐…
-
인강 컨텐츠들이 25대비에 비해서 풍부한 느낌인데 김범준 데뷔, 뉴런 개정, 김승리...
-
고민되네여~
-
같은 제목을 붙이란 말이야 라인봐달라고 제목부터 말하면 들어가기 싫으니까
-
인문사회대 통계 찍어놓은게 있는데 아직 상경 >> 공대긴 했어요 자연대도...
-
추구미랑 너무 다름
-
시대인재 입시센터장 내부컷 왈 48점 백분위 92 47점 백분위 88 47점부터 3등급이라네요 ㅋㅋ
-
정상화될라가라하네 진짜 두들겨맞아봐야 정도를 아는건 그성별 특징인듯
-
난 친구없어도 쓰는데,,,,,,,
-
히히 하나 더 싸야지
-
2024년 도쿄대 본고사 화학 문제입니다. 우리나라에서 7차 교육과정 이후로...
-
내가 수능 볼 때 자주 보이시던 분이라고 댓글 종종 달리는데 뭔가 신기하고 무섭고 그렇네요
-
문과 대학라인 0
고3현역입니다 어디까지 될까요?
-
된다해도 만점권밖에 안되죠?
-
모든 대학에서 홍보가 좀 안된 느낌이네요.. 이거 사실상 전컴인데 대부분 학교에서...
-
인강 사이트가 표본이 아무리 많아도 고정된 표본이 아닌데 시대인재 재종은 고정된 +...
-
라면인건가
-
텔그로는 성균관 전자 52퍼 서강대 기계 60퍼 뜨긴 하는데 진학사기준으로는 둘다...
-
지듣노 3
노래 좋아서 추천합니다
-
2년 전에 칼럼 쓰다가 요즘은 거의 뻘글만 쓰게 되는 ㅋㅋ 아 물론 인증도 여러 번...
-
내 성적이 개같긴한데 숭실보다 국민이 퍼센트가 더 높네요
-
제발.
-
편하구나 불쾌한글 그만봐도 되겠다
-
야하지 않음?
-
가녀린 여학우들의 마음을 이해해줄 오빠가 있으니 안제든 기대요~ >_^
-
23보다 1컷 4점정도 높으니까 100점 141~142 96점 138~139 정도가...
-
지2 만표 70으로 잡던데 1.일단 작년 대비 시대 평균 고득점자 압도적으로 낮음...
-
혼란스러운 오르비에서 10
난 맞팔구를 외친다 잡담태그잘달아요
-
안녕하세요, 2년전 겨울 의대, 그리고 수험의 관성에 대한 글을 쓴...
-
이쁘면 내꺼야 흐흐흐.
-
나 저번에 ㅇㅈ했을때 11
남붕이들한테서쪽지오길기대했는데 여붕이한테서만쪽지와서실망했었음 뻥임뇨
-
제목어그로고 언매 85 (언매 -5, 공통 -10) 2등급 ㄱㄴ?
-
그 말이 옳을까?
-
절망하는건 6일 뒤에 해도 늦지 않아요~ 두번 절망하면 슬프잖아요?
-
확통 만점 표점 너무 높은데
-
그만 놀려주세요
-
연대 공대 스나 해볼만한가요
-
2컷이 47~48이려나?...
-
한국 버튜버 혐오함? 서로 싸우고있네 둘 다 똑같아보이는데
가운데에 뭔기호에요?
a | b 에서 b가 a로 나누어 떨어진다는 의미입니다
이젠 님이 알려주시는군요..ㅋㅋ
이 문제 n<=2p 조건을 쓰면 간단한가요? ㅋㅋ 제 풀이는 이걸 안 썼는데 (어떻게 쓸지 모르겠어서..) 안 써서 그런가 좀 어려운 문제인 듯..
답은 (n,p) =(2,2), (3,3)이다.
i) 2|n
2|(p-1)^n+1 => p=2 =>n|2 => n=2.
ii) n은 홀수이고 p의 배수가 아님.
n의 최소 소인수를 q라고 하자. p-1이 q의 배수가 아님은 당연하다.
(p-1)^2n==1 (modq), (p-1)^(q-1)==1 (modq) (by 페르마 소 정리)
=> (p-1)^gcd(2n,q-1)==1 (modq) => (p-1)^2==1 (modq) (∵q는 홀수, (q-1,n)=1)
=> q|p(p-2)=>q|p-2 => p==2 (modq) (∵p와 q는 서로 다른 소수)
=> 0==(p-1)^n+1==1+1==2 (modq) => q=2 모순.
iii) n은 홀수이고 p|n.
v_p(n)=x라 하자.
Lifting the exponent lemma에 의해
x*(p-1)≤v_p((p-1)+1)+x => (p-2)x ≤ 1 => p≤3 => p=3 (∵x≥1)
=> n^2|2^n+1. 이는 imo 1990/P3이고, 답은 n=3 하나뿐이다.
따라서 구하는 모든 (n,p)는 (2,2), (3,3)이 전부이다.
오 맞아요 이제 봤네요.. 난도를 낮추기 위해 필요한 조건이랄까요 ㅋㅋ
쉽게푼 버전입니다
n^(p-1) | (p-1)^n + 1 이므로
n | n² | ... | n^(p-1) | (p-1)^n + 1
i) p가 n의 약수
p | (p-1)^n +1이므로 (-1)^n +1 = 0 (mod p)
1) n 짝수
2 = 0 (mod p)인 p = 2가 유일.
n^(p-1) | 2 이므로 n <= 2, 따라서 1 < n <= 2인 짝수 n은 2뿐.
2) n 홀수
n = pk <= 2p이므로 k = 1, n = p
따라서 준 식 p^(p-1) | (p-1)^p + 1
한편
(p-1)^p + 1
= pCp p^p - pC(p-1) p^(p-1) + pC(p-2) p^(p-2) - ... - pC2 p² + pC1 P - 1 + 1
= p² (pCp p^(p-2) - pC(p-1) p^(p-3) + ... - pC2 + 1) = f(p)
p | pCi 이므로 p² | f(p)이고 p³ !| f(p)
따라서 홀수 p는 3이 유일, 이때 n = 3
ii) p가 n의 약수 x
{n, n², ..., n^(p-1)} = {1, 2, ..., p-1} (mod p)
따라서 (p-1)! = (p-1)^n + 1 (mod p)
이때 (p-1)! = p-1 (mod p) 이므로
p-1 = (p-1)^n + 1 = (-1)^n + 1 (mod p)
p > 2인 소수 p에 대해 p-1 != (-1)^n이므로 불가
(2, 2), (3, 3)
맞습니다!
윗댓 사진 풀이 참고해보세요!
저런 문제는 어디서 가져오는 건가요?
작성하신 글 보니 저런 거 종종 올리시는 것 같은데..
경시 변형하거나 대부분 제가 만듭니다
그렇군요 감사합니다
약간의 오타가 있네요
마지막줄 p-1 != (-1)^n + 1 (mod p)
내친 김에 1990 imo P3 제 풀이도 올려봅니다.
n^2|2^n+1
n=1이면 조건을 만족한다.
n>1일 때, n의 최소 소인수를 p라고 하자.
2^(2n)==1 (modp), 2^(p-1)==1 (modp) (by 페르마 소 정리)
=> 2^(2n,p-1)==1 (modp) => 2^2==1 (modp) (∵(n,p-1)=1)
따라서 p=3이다.
Lifting the exponent lemma에 의해
2*v_3(n)=v_3(n^2)≤v_3(2^n+1)=v_3(2+1)+v_3(n) => v_3(n)≤1 => v_3(n)=1
n=3t라 하자. (t는 3의 배수가 아니다.)
t>1이면 t의 최소 소인수를 q라고 하면,
8^(2t)==1 (modq), 8^(q-1)==1 (modq) (by 페르마 소 정리)
=> 8^(2t,q-1)==1 (modq) => 8^2==1 (modq) (∵(t,p-1)=1)
=> q|63 => q=7 (∵q≠3)
2^n+1을 7로 나눈 나머지는 2,3,5만 가능하므로 모순, => t=1 => n=3
n=3일 때 확인해보면 해가 됨을 알 수 있다.
따라서 구하는 n은 1,3.
오 aops에서 봤던 풀이랑 비슷해요
근데 위에 풀이에서
q|p-2인 경우에 왜 쌍둥이 소수여야만 가능한가요?
q와 p가 모두 소수여서요 2차니 나는 소수쌍을 쌍둥이 소수라고 해요
그건 아는데 p-2가 꼭 소수이진 않잖아요, p-2가 합성수이고, q가 p-2의 약수일 수도 있는거 아닌가요
아 그렇네요. 아무생각없이 풀다보니까 그렇게 됬군요. 수정해서 올릴게요..ㅋㅋ
제가 그 부분에서 잠깐 막혔었는데 그냥 제 풀이처럼,
p==2 (modq) => 2==(p-1)^n+1==0 (modq) => q=2로 처리하는게 젤 간단한 듯요
맞아요. 제가 쓴 풀이 위에구해논 mod 식을 이용하는게 젤 간편하긴 해요
추가적으오 최대공약수 쪽으로 풀어서 접근해서 되는지 해보고 있었습니다