재밌는 문제 풀어보셈요(10.16)(1500덕)
간단한? 정수 문제입니다.
난이도 : 2.5/5
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
너무 귀찮타뇨...........
-
다람쥐같으심
-
올해 세지 48 백분위 97, 지구42 백분위 96이고(실수1) 지구 서바 보통...
-
미성년자라 부모님 동의있어야한다네요 산 지 얼마안됐는데 말씀드리기 좀 그래서,,...
-
조경학과 다녀요(아님)
-
보추가 되고싶은 밤이다 21
하와와 오토코노코가 되고싶지만 고기 3인분 구워먹고 살 디룩디룩 찔 예정
-
여친이 너무 앵김뇨 14
앵드레 킴임뇨
-
오늘 일어나서 지금까지 하루종일 했는데 에2 유지임 시발ㄹㄹㄹㄹㄹㄹㄹㄹㄹㄹㄹㄹㄹㄹㄹ
-
진학사 2
평백 91인데 (수학을 잘봄) 진학사에서 환산점수했을 때 평백 93 94인...
-
언미생지기준 백분위 97 100 2 95 100
-
피의공부머신출발 3
ㄱㄱㄱㄱㄱㄱㄱㄱㄱ
-
큐브에 더 이상 유명한 아이돌 없고 비투비 아이들 다 재계약 안하니까 프미나가 만약...
-
오늘은 올릴게 없다...
-
열심히 만들었는데 댓글이 없어서 울었어...
-
그래서 칭구를 모사귐뇨
-
연대논술 (연세대논술) 2차시험 크게 이변이 생기지 않는이유 0
https://m.blog.naver.com/kcmjungmin36/223677192773
-
서울대 의대 교수들이 보여준 모습이 워낙 실망스러웠던 반면에 세브란스 교수님들의...
-
여기서라도 친구 만들고 싶은데
-
맨날 확통 50점받던 애가 수능 확통 다 맞고 70점된거 보고 좀 억울해짐 3
얼마나 쉬운거임 대체..ㅎㅎ
-
말출 1주일전 6
짬평가좀
-
찬우야이! 6
눈이 오면, 임철우.
-
올 수 확통에서 4점 틀리는 거보다 미적에서 12점 틀리는 게 훨씬 잘한 거 같은데 ㅋㅋ
-
미적 1컷 92 국어 언매 1컷 95 국어 화작 1컷 97 1등급 애들이 틀릴...
-
4cm됨뇨
-
n티켓 난이도 3
n티켓 난이도가 어느 정도죠. 쉬4 ~ 준킬?
-
홍대 가능? 2
제방
-
………성적은 반짝거리면서 텔그 아래에서 (문과를 말하는 성적) 간간히 문과를...
-
생명 3컷 1
3컷이 36이 될 확률 ... 아예 물 건너 갔나요 ㅠㅠㅠㅠㅠ ??
-
여기서 15%씩은 전부 떨어진다고 보는게 마음 편한가요?
-
아니 화장하는 것 자체는 알겠는데 왜 화장하고 이마대고 엎드려서 자요? 화장...
-
해당 기업에 최소 몇년 근무해야함?
-
원점수 기준 어떤게 더 낫나요? 연고대 지망 중이고 서울대까지 도전하고싶습니다.
-
모아나 보러갈가 5
흠
-
한완수 한완기 0
뉴런 수분감했으면 한완수 한완기 안하고 바로 이해원n제 풀어도됨?
-
세계사 0
동아시아사는 해보고 매우 만족스러웠는데 세계사도 비슷한가여?? 특성이나 장단점 알려주세요
-
서울대 자연대 , 상경계열 전공 육군 후방에서 복무중 질문 자유롭게 ㄱㄱ
-
갔다오고 나서 너무 피곤해가지고 아 다신 안 갈거야!! 했는데 막상 내년에 가고...
-
뭐야 수퍼소닉으로 오랜만에 컴백해서 반응 좋았고 삐끼삐끼나 뭐 그런 걸로 뜨기도...
-
재수안하고 버틸수있으려나이거
-
레전드기만 8
-
아 3
인생 빨리 머리털 깎든가 해야지
-
이별안하는법 3
이건 드립치면 죽을듯
-
그나마 남초팬덤이던게 아이즈원 프미나였는데
-
주류집단인 솔로에게 저항하는거아님뇨? 반박안받음뇨
-
한번 쯤은 다시 생각해보라고 할 듯...
가운데에 뭔기호에요?
a | b 에서 b가 a로 나누어 떨어진다는 의미입니다
이젠 님이 알려주시는군요..ㅋㅋ
이 문제 n<=2p 조건을 쓰면 간단한가요? ㅋㅋ 제 풀이는 이걸 안 썼는데 (어떻게 쓸지 모르겠어서..) 안 써서 그런가 좀 어려운 문제인 듯..
답은 (n,p) =(2,2), (3,3)이다.
i) 2|n
2|(p-1)^n+1 => p=2 =>n|2 => n=2.
ii) n은 홀수이고 p의 배수가 아님.
n의 최소 소인수를 q라고 하자. p-1이 q의 배수가 아님은 당연하다.
(p-1)^2n==1 (modq), (p-1)^(q-1)==1 (modq) (by 페르마 소 정리)
=> (p-1)^gcd(2n,q-1)==1 (modq) => (p-1)^2==1 (modq) (∵q는 홀수, (q-1,n)=1)
=> q|p(p-2)=>q|p-2 => p==2 (modq) (∵p와 q는 서로 다른 소수)
=> 0==(p-1)^n+1==1+1==2 (modq) => q=2 모순.
iii) n은 홀수이고 p|n.
v_p(n)=x라 하자.
Lifting the exponent lemma에 의해
x*(p-1)≤v_p((p-1)+1)+x => (p-2)x ≤ 1 => p≤3 => p=3 (∵x≥1)
=> n^2|2^n+1. 이는 imo 1990/P3이고, 답은 n=3 하나뿐이다.
따라서 구하는 모든 (n,p)는 (2,2), (3,3)이 전부이다.
오 맞아요 이제 봤네요.. 난도를 낮추기 위해 필요한 조건이랄까요 ㅋㅋ
쉽게푼 버전입니다
n^(p-1) | (p-1)^n + 1 이므로
n | n² | ... | n^(p-1) | (p-1)^n + 1
i) p가 n의 약수
p | (p-1)^n +1이므로 (-1)^n +1 = 0 (mod p)
1) n 짝수
2 = 0 (mod p)인 p = 2가 유일.
n^(p-1) | 2 이므로 n <= 2, 따라서 1 < n <= 2인 짝수 n은 2뿐.
2) n 홀수
n = pk <= 2p이므로 k = 1, n = p
따라서 준 식 p^(p-1) | (p-1)^p + 1
한편
(p-1)^p + 1
= pCp p^p - pC(p-1) p^(p-1) + pC(p-2) p^(p-2) - ... - pC2 p² + pC1 P - 1 + 1
= p² (pCp p^(p-2) - pC(p-1) p^(p-3) + ... - pC2 + 1) = f(p)
p | pCi 이므로 p² | f(p)이고 p³ !| f(p)
따라서 홀수 p는 3이 유일, 이때 n = 3
ii) p가 n의 약수 x
{n, n², ..., n^(p-1)} = {1, 2, ..., p-1} (mod p)
따라서 (p-1)! = (p-1)^n + 1 (mod p)
이때 (p-1)! = p-1 (mod p) 이므로
p-1 = (p-1)^n + 1 = (-1)^n + 1 (mod p)
p > 2인 소수 p에 대해 p-1 != (-1)^n이므로 불가
(2, 2), (3, 3)
맞습니다!
윗댓 사진 풀이 참고해보세요!
저런 문제는 어디서 가져오는 건가요?
작성하신 글 보니 저런 거 종종 올리시는 것 같은데..
경시 변형하거나 대부분 제가 만듭니다
그렇군요 감사합니다
약간의 오타가 있네요
마지막줄 p-1 != (-1)^n + 1 (mod p)
내친 김에 1990 imo P3 제 풀이도 올려봅니다.
n^2|2^n+1
n=1이면 조건을 만족한다.
n>1일 때, n의 최소 소인수를 p라고 하자.
2^(2n)==1 (modp), 2^(p-1)==1 (modp) (by 페르마 소 정리)
=> 2^(2n,p-1)==1 (modp) => 2^2==1 (modp) (∵(n,p-1)=1)
따라서 p=3이다.
Lifting the exponent lemma에 의해
2*v_3(n)=v_3(n^2)≤v_3(2^n+1)=v_3(2+1)+v_3(n) => v_3(n)≤1 => v_3(n)=1
n=3t라 하자. (t는 3의 배수가 아니다.)
t>1이면 t의 최소 소인수를 q라고 하면,
8^(2t)==1 (modq), 8^(q-1)==1 (modq) (by 페르마 소 정리)
=> 8^(2t,q-1)==1 (modq) => 8^2==1 (modq) (∵(t,p-1)=1)
=> q|63 => q=7 (∵q≠3)
2^n+1을 7로 나눈 나머지는 2,3,5만 가능하므로 모순, => t=1 => n=3
n=3일 때 확인해보면 해가 됨을 알 수 있다.
따라서 구하는 n은 1,3.
오 aops에서 봤던 풀이랑 비슷해요
근데 위에 풀이에서
q|p-2인 경우에 왜 쌍둥이 소수여야만 가능한가요?
q와 p가 모두 소수여서요 2차니 나는 소수쌍을 쌍둥이 소수라고 해요
그건 아는데 p-2가 꼭 소수이진 않잖아요, p-2가 합성수이고, q가 p-2의 약수일 수도 있는거 아닌가요
아 그렇네요. 아무생각없이 풀다보니까 그렇게 됬군요. 수정해서 올릴게요..ㅋㅋ
제가 그 부분에서 잠깐 막혔었는데 그냥 제 풀이처럼,
p==2 (modq) => 2==(p-1)^n+1==0 (modq) => q=2로 처리하는게 젤 간단한 듯요
맞아요. 제가 쓴 풀이 위에구해논 mod 식을 이용하는게 젤 간편하긴 해요
추가적으오 최대공약수 쪽으로 풀어서 접근해서 되는지 해보고 있었습니다