재밌는 문제 풀어보셈요(10.17)(30000덕)
생각보다 덕코가 많아져서 시원하게 한 번 가겠습니다
제가 아껴두었던 조합문제입니다
난이도 : 4/5
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼버기 2
모두 좋은 아침
-
원인있음의사난수 원인없음진성난수 제1원인은->원인없음 제1원인은->진성난수...
-
귀여워! 12
-
3,4등급 애들은 재수 어디서 함? 시대 강대 미만 다 비슷함? 3,4등급 재종기숙 추천좀
-
페북느낌난다
-
오디다가 하시나용
-
모닝여캐투척 18
짠
-
'현장감' 이 차이가 정말 큼 화작은 아무리 어려워도 공부가 잘돼있다면 시험장에서도...
-
부산대 인문논술 0
부산대 인문논술 3-2 소문항 한개 못적었으면 무조건 탈락인건가요? 앞에껀...
-
https://naver.me/GpC6rq15 이지랄 ㅋㅋㅋㅋㅋㅋㅋ
-
대 리 런 4
약코 GOAT
-
그때부터는 꿀이 아니라는거군요 그럼 존버가 승리하는것?
-
인스타 릴스에 중드 계속 나오는데 찔끔찔끔 보여주고 딴데선 못찾겠어서 정신이 나갈것 같음
-
아니면 따로 낙지에서 만든 변표공식이 있나요?
-
야채음료 먹음 2
오늘 먹을 메뉴가 다 야채가 부족해 이거라도 먹어야지
-
한국국립대학교??? 10
너무 보통명사 아닌가 얘네 이걸로 이름 바꾸려고 이러는 것 같은데 흠?
-
얼버기 5
-
아오 습해 1
비와서 축축해
-
세상은 올바른 선택을 하는 것이 그 무엇보다도 중요하다는 것.
-
슬슬 자볼까 1
겉날개얻고 몬스터팜 만들었으니 꿀잠자러 고고
-
얼버기 4
인녕하세요
-
지금까지는 맞는말같긴함 작수때 언매미적물1지1으로 89 89 2 88 95 맞았는데...
-
워드마스터2000 끝냈고(3회독) 암기율은 80정도? 제가 단어가 약헤서 다른...
-
오늘은 뻘글 안 쓰고 일만 할 겁니다
-
힘을 좀 내줘 씨발럼아!!
-
영어 과외 질문 0
고등학교 3년 내내 모고 1등급은 놓친 적이 없고 수능은 97점 나왔습니다. 올해...
-
아침 먹으면서 쿵짝짝 쿵짝짝 하면서 토스어플 딱 까봤는데 떡락한 거 보고 나이스...
-
진단서 써줌? 기말 끝나고 링거 맞을건데 병원에서 진단서 써주는지 궁금함
-
군대 안가면 좋겠다는 말도 안되는 망상을 해본다
-
저 남르비예요.. 오해하시는 분들이 많으신 것 같길래
-
하나 사고싶은데... 비싸...
-
얼버기 0
우헤헤
-
아 어제 할껄 4
비 오고난 후 추워질텐데 역시 할 일은 바로바로 해야 해
-
사실 출근안했고 아침먹는중임 가기싫다
-
이거 좀 답해줘 3
9시 수업있는데 원래 2시 수업도 있는데 싸강됨.. 귀찮은데 걍 모자쓰고 갈까??...
-
아학교가기싫어 6
비는 또 왜 오는건데ㅠㅠ 지금 결석할지말지 고민즁잉대ㅜㅜㅜ
-
헤헤
-
곧 7시가 되기 때문입니다 오늘도 파이팅
-
뻘소린데 0
요즘 물가에 질식할 것 같음 걍 날 죽여라
-
밤 왜 샜지..... 수시러들 암튼 존경함
-
일어나
-
쿠팡 힘들다 1
이걸 연속으로 뛰는 사람은 대단하네 ㄷㄷ
-
근데 그 시절이 너무 그리워 꼴에 첫 대학생활이라고 마음이 조금 부푼 것도 있었고...
-
결국 5수를 하나. 사탐런 진지하게 고민해봐야되나
-
트리플에스 끝!
-
동덕여대보다 더 처참함
-
죄는 없는데 죄책감생김
-
https://naver.me/5YFRHw2t 어디든 민주 한숟갈 올리는게 요즘 여대에서 유행인가봄
Hug...
갳우좀
(2/5)^n
아쉽군요... 매우 다릅니다!
찍맞실패
풀긴풀었는데 답 식이 너무 복잡해서 확신이 하나도 안드네요..
좀 복잡하긴 해요 ㅋㅋ n=3일때만 구해서 보내주세요 그걸로 확인할게요
1/5 * (4/5)^(3n^2-7n+4) * (3/4) ^(8n-8) * (2/3)^4 * (1/2)^2n(n-1) 나오는데 아니겠죠..?
아니에용..
(1/5)*(2/5)^4*(3/5)^(8n-16)*(4/5)^(3n^2-14n+16)*(1/2)^(2n^2-2n) 이 나왔어요
거의 근접한데 아쉽네요..
거의 비슷하신데 약간의 오류가 있는것 같아요
길이가 n인 정사각뿔에 사용된 A, B의 수
A : 2n(n + 1)(n - 1)/3 개
B : n(2n² + 1)/3 개
정사각뿔의 표면을 구성하는 면의 수
A : 2n(n - 1) 개
→ 1개 × 2n(n - 1)
B : n(3n + 2) 개
→ 4개 × 1
+ 3개 × 4
+ 2개 × 8(n - 2)
+ 1개 × (3n² - 14n + 16)
죄송해요... 검토해봤더니 제가 계산과정에서 (4/5)^(3n^2-14n+24)로 잘못 구했네요;;
맞습니다!
제가 생각한거에 비해 간단히 푸셨네요.. 더 분발해야겠군요
1/5 * (4/5)^(3n^2-6n+4) * (3/4) ^(8n-12) * (2/3)^4 * (1/2)^2n(n-1) 맞나요?
윗댓이 정답이에요! 죄송합니다 ㅠ
위 댓하고 식은 똑같은데 너무 늦게 풀었네요..
다음에도 화이팅!
그것도 고려해봐야겠군요...
갠적으로 A와 B배열 구하는 것도 오래걸릴거라 생각해서 마무리를 너무 얕게 만들었던 것 같네요 ;
확실히 공간지각능력이 요구되는 문제인 만큼
조금만 꼬아서 내도 난이도가 꽤 높아지지 않을까 합니다