샌드위치 정리 감성 (ft. 극단적 사고하기, 열린 사고)
h(x)를 정리해 봅시다.
그래프 그려보시면 대충 사다리꼴 하나가 나옵니다.
a도 모르고 b도 모르고 k도 몰라서
어디서부터 뭘 할 수 있을까 처음에 막막합니다.
그런데 이 조건에 초점을 두어 봅니다.
우선 x가 0 이하일 때에는 당연합니다.
0은 0 이하이고 동시에 0은 0 이상이기 때문입니다.
그리고 구간 [0, 2]에서는 생각하기가 복잡합니다.
앞서 x가 0 이하일 때를 살펴본 것을
x가 충분히 작을 때를 살펴본 것이라 생각합시다.
그러면 우리는 대칭적으로 x가 충분히 클 때를 살펴보고 싶습니다.
그런데 x>2일 때 g(x)=0입니다.
그래서 x>2일 때 h(x)도 0을 함숫값으로 가집니다.
이때 h(x)=k(a+b-2)였기 때문에 a+b=2임을 확인할 수 있습니다.
그러면 다음과 같이 h(x)식을 다시 작성해줄 수 있는데
생각하기가 훨씬 편해집니다.
이제 함수 g(x)도 h(x)도 x=1에 대해 대칭이기 때문에
함수 g(x)-h(x)를 구간 [0, 1]에서만 살펴봐주어도 되겠습니다.
이제 구간 [0, 1]에서의 적분값이 최소가 되도록 해 봅시다!
만약 a가 모든 실수를 범위로 한다면
적분값이 a에 대한 이차함수이기 때문에 a=1 넣고 끝내면 되겠지만
a<b 조건에서 0<a<1임을 확인하실 수 있습니다.
따라서 그런 식으로 문제가 풀리지 않을 것이라는 것을 확인하시면 좋습니다.
아직 이 조건을 제대로 활용해주지 않았는데,
마찬가지로 구간 [0, 1]에서만 신경써주면 되겠습니다.
이때 구간 [0, a)나 [a, 1]이나 모두 최고차항의 계수가 음수인
이차함수의 그래프를 보고 있으므로 대칭축이 어디에 있든
x=0, x=a, 그리고 x=1에서의 함숫값이 음수가 아니기만 하면
위의 부등식이 성립할 것임을 확인할 수 있습니다.
이는 x=0과 x=a, 그리고 x=1을 기준으로 대칭축의 위치를 나누어 보시고
하나씩 판단해 보시면 금방 확인하실 수 있습니다.
0<a<1이므로 남는 조건은 다음의 부등식입니다.
이를 통해 주어진 적분값을 나타낼 수 있습니다.
그렇다면 주어진 적분값의 최솟값은 위 부등식 우변의
a에 대한 삼차함수일 것임을 확인할 수 있습니다.
우변의 삼차함수는 0<a<1일 때 a=2/3에서 극솟값을 가지므로
a, b, k의 값을 모두 결정할 수 있습니다.
다른 문제를 살펴봅시다!
앞서 a+b=2 조건을 발견한 것과 비슷하게 생각해 봅시다.
0<h<g 꼴에서 g=0이면 h=0임을 확인할 수 있었듯이
만약 2k-8=4k^2+14k라면 주어진
점 (k, f(k))와 점 (k+2, f(k+2)) 사이의 평균변화율도
2k-8일 것입니다.
위의 등식을 만족하는 k의 값은 -2와 -1입니다.
이후 계산하여 f(x)의 이차항, 일차항 계수를 확인해주었으면 됩니다.
p.s. 고정 관념을 버리는 것은 수능 수학 공부에 도움이 됩니다.
시도해 볼 수 있는 풀이가 n가지 있을 때 하나만 올바르다면
그 하나를 찾아내는 것이 실력이라고 생각합니다.
구간 [0, x]에서 어떤 함수를 적분한 x에 대한 함수가 주어졌다고
무조건 미분해 보는 것이 답이 아니고,
평균변화율 꼴로 식이 주어졌다고
무조건 기하적으로 해석해 보는 것이 답이 아닙니다.
위 문항 2025학년도 9월 21번도 점 (k, f(k))과 점 (k+2, f(k+2)) 사이의
평균변화율로 직관적으로 이해해보려 하는 동시에
k가 정수임을 신경쓰며 주어진 부등식을 다루어보려 했다면
현장에서 빠르게 정답을 내기 쉽지 않았을 것입니다.
2022학년도 9월 14번 변형 문항인데,
x<0에서의 g(x)를 점 (0, f(0))과 점 (x, f(x)) 사이의 평균변화율로
바라볼 필요 없이 그냥 식 정리해서 이차함수로 다루시면 됩니다.
비슷한 느낌의 기출 하나가 있었는데 못 찾겠어서 나중에 찾으면 댓글로 언급해두겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 1 답글 달기 신고
-
어떰? 들어올 만함?
-
주체할 수 없는 분뇨 12
뻥임뇨
-
ㅇㅈ 메타였음? 9
-
억장이 와르르
-
있는데 추천함 별로 무섭지도 않음 ㄱㄱ 개재밌음
-
그래서 한참보다가 반응따라서 복사함
-
ㅠㅠ
-
이미지랑은 관련 없음뇨
-
ㅇㅅㅇ
-
사수인데 여캠을 진심으로 사랑했음뇨 진심으로 남친없을거라고 돈 개많이 바금뇨 수능 망하고 정공감뇨
-
난 토쏠리던데
-
루비어디감??? 4
사실 얼굴은 안궁금하고 댓글로 장난질해야함
-
누군지는 비밀임뇨
-
제곧내 2024 강의를 듣는 법 없나요? 아무리 찾아도 안나와서요 ㅠ 그리고...
-
제가 언매 0틀 87점인데 저 자료 기준 표점 126점이 나온다는 거고 수학은 선택...
-
지금 이건데 대학가서 동기들한테 마구 전화때리면 씹인싸가능함???
-
오타 ㅈㅅ
-
기함수라는사실
-
미적 88 질문 2
만약 공2 미1까지 했을 때 4프로 이내이고 공1 미2까지 합쳐서 4프로가...
-
소원이 없겠뇨
-
배경화면 ㅇㅈ 3
메타를 놓쳐선 안되
-
알고있다면 군필임뇨
-
떨치고 자자 3
이상하게 읽으면 안되요
-
배경화면 ㅇㅈ 7
-
충격 발언 2
본인은 패션 씹덕이다 평소에 애니를 보지 않는다
-
배경화면 ㅇㅈ 2
-
배경화면 7
-
심리를 갖게되는 이유가 뭐임?
-
참고로난 실친이 오 너 애니 좋아하는구나 하고 더 이상 캐묻지않는정도임
-
자고 싶다는 생각이 안 드네
-
ㄹㅇㅋㅋ
-
딸치고 잔다. 24
ㅂ2
-
ㅈㄱㄴ
-
내가 알고 있는 것들을 많은 분들과 공유하면 좋겠다는 생각이 들어서, 아주 간단하게...
-
군필 02년생, 중앙대 경영 휴학 중인 상태 sky 너무 가고 싶은데 갈만한 학과가...
-
Level1 귀멸의 칼날 진격의 거인 주술회전 원펀맨 Level2 체인소맨...
-
난 벌써 모으는 중
-
26 올라오는 날 / 25 내려가는 날 알려주실 수 있나요? 12월 초-중순부터...
-
수면매매법시작 2
기술적수면
-
궁금한 거 있으면 오르비에서 검색
-
ㄹㅈㄷ
-
아니.. 47이 2라는 사람 3이라는 사람 44가 4등급이라는 사람.. 참 뭐 하나...
-
명문대생들이 부럽다
-
저거 Z누백 만점자 비율이 아니라 과탐 전체에서 상위 몇퍼에 해당하는지 나타낸 거라...
-
과외 0
지금 기말고사 기간이라 과외 잘 안구해지는 거겠죠…? 요즘따라 잘 안구해지네
-
새벽의학교도서관 7
사람업서서좋네요
-
내가 자길 좋아하는 줄 아는거면 내 행동에 문제 있는거임?