[칼럼] 속도 변화량과 운동량 보존(물1)
**감상 전 좋아요와 팔로우는 작성자에게 큰 힘이 됩니다!!
안녕하세요!! 오늘은 수학의 "거리곱"과 같이 계산을 조금(?) 줄여줄 수 있는 풀이법 하나를 들고왔습니다.
알고 계시는 분이 적지는 않을 것이라고 생각되는 주제이지만, 긴 칼럼은 아니니 즐겁게 읽어주시면 감사하겠습니다!
우리가 흔히 "운동량 보존" 하면 떠오르는 식이 하나 있습니다.
바로 이 친구죠 (v는 충돌 후 속도, v'은 충돌 전 속도입니다!)
우리는 위의 식을
와 같이 변형하고, 이를 운동량 보존 법칙이라 부릅니다.
(원래 p앞에 델타가 들어가야하는데 수식 입력기에서 안들어가네요.. 양해 부탁드립니다)
.
.
.
근데, 밑의 식의 vA-vA' 이 친구... 어딘가 낯이 익습니다.
충돌 후 속도에서 충돌 전 속도를 뺍니다.
사건 후 속도에서 사건 전 속도를 뺍니다.
맞습니다. 바로 속도 변화량입니다.
그래서, 우리는 운동량 보존 법칙을 다음과 같은 공식으로 변형하여 쓸 수 있습니다.
사실 이론은 여기서 끝입니다. (가만 보면 별거 없긴 합니다.)
사실 이 식의 진가는 문제를 푸는 데에서 나옵니다. 문제를 보실까요?
첫번째 문제입니다. 231116입니다.
초기 B의 속도는 8m/s인 것, 3초 이후 A와 B의 속도는 모두 5m/s 인 것이 자명하니
만약 운동량 보존식을 세우게 된다면, 식은 다음과 같을 것입니다.
이번 칼럼에서는 이 식 대신에, 속도 변화량을 이용한 운동량 보존식을 한 번 써봅시다.
이렇게 충돌 or 분리 상황이 단순한 문항에서는 사실 위를 쓰나 아래를 쓰나 큰 상관이 없습니다.
일단 한 문제 더 보실까요. 230613입니다.
정석적인 풀이는 다음과 같습니다.
속도 변화량으로 푼다면 다음과 같습니다.
표를 읽는 법을 말씀드리자면, 물체 또는 계의 전후 속도를 적어두고, 선 밑에 속도 변화량을 적습니다.
속도 변화량 밑에는 운동량이 보존 되도록 하는 물체 또는 계의 질량비 혹은 실제 질량값을 적어주시면 됩니다.
(이 질량비는 속도 변화량 비율의 역수가 되겠죠!)
여기까지 보면 밑이 조금 더 눈에 가시적으로 들어오는 정도? 될 것 같습니다. (나만 그런가)
마지막은 210917인데요, 이 방안을 극한으로 쓰면 어디까지 쓸 수 있는 지를 보여드리고자 합니다.
이번에는 속도 변화량으로만 풀어보도록 하겠습니다.
일단 모든 시점에서 A ,B, 우주인의 운동량의 합은 보존됩니다.
우주인, A, B가 함께 운동하던 시점에서 3개가 모두 분리 되는 시점까지의 변화를 파악해봅시다.
이 두 시점 사이 A, B의 속도 변화량은 v라 한다면, 식을 다음과 같이 적을 수 있습니다.
자연스래 A와 B의 속도 변화량 v는 2/3v0 가 되고, 분리 직후 A의 속도는 5/3v0이 됩니다.
이번에는 우주인, A, B가 함께 운동하던 시점에서 A만 떨어져 나오는 시점까지 분석해보겠습니다.
함께 운동하는 B와 우주인을 질량이 3m인 계로 취급하고 이 계의 속도 변화량을 v라 하겠습니다.
그럼 식은 다음과 같습니다.
따라서 v는 -2/9v0가 되고, 답은 4번이 됩니다.
이걸 직접 운동량 보존 법칙 만으로 풀어보신다면 이 풀이가 계산을 얼마나 줄였는지 체감하실 수 있을 것이라 생각됩니다.
.
.
.
.
아무래도 마지막 문제와 같은 복잡한 상황이 요새는 잘 등장하지 않기 때문에 이 풀이를 그닥 중요하지 않다고 생각하실 수도 있을 것 같습니다.
하지만 아까 제가 말씀드렸듯이, 저는 개인적으로 이 풀이를 "거리곱"과 비슷하다고 생각합니다.
한 마디로 말하자면, "없어도 상관없으나 있으면 도움은 되는 정도?"
굳이 식 여러 줄 달고 다니지 않고, 두번째 문제에서 보여드린 표 풀이처럼 훨씬 가시적으로 질량비를 구할 수 있기 때문이죠. 그래도, 익혀두어서 나쁠 것은 없으니 한 번 정도는 익혀보시는 것을 추천하기는 합니다. (이 정도면 해주자)
이 풀이는 두번째 문항처럼 질량비를 구하는 데 쓰실 수도 있고, 세번째 문항처럼 속도 변화량을 구하는 데 쓰실 수도 있습니다. 보통 질량비를 구하게 된다면 속도 변화량의 비가 주어져있는 상태일 것이고, 속도 변화량을 구하게 된다면 질량비와 남은 하나의 물체 또는 계의 속도 변화량이 주어져 있을 것입니다.
.
.
.
.
아무쪼록 긴 칼럼 읽어주셔서 감사드리고, 지적할 부분이 있으시거나 궁금한 점이 있으시다면 댓글 달아주시면 감사하겠습니다! 지금까지 lshdmw이었습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
. 여자라고 어그로끄는거임??
-
근데 아빠 왜 거실에서 게임중이시지....? 아..
-
돈내놔임마 0
다해줬잔아
-
오르비의 순기능 2
걍 아무생각없이 똥글 싸는 곳
-
CC 그딴거 두렵지 않으려면 어떻게 해야 되냐. 과탐 투투를 고르면 됨. 1도...
-
내가살던자취방은 그냥 5성호텔이었구나.. 그립다
-
칼럼 좀 써보고 싶은데 13
수능공부들이 가물가물함 수능교재 함 펴볼까나 오르비에 있을 명분이 필요해서 그런 거 절대 아님
-
기하 사탐 경한 2
기하 사탐 조합으로 경한(자연) 정시로 갈 수 있나요?? 확통으론 절대 바꿀 생각...
-
임포 연전연승 19
나 혼자 3킬 이상
-
아 재밌었다 4
히히히
-
노베현여기 수학 기출 안풀고 n제부터 하도 되져? 20
사람들이 n제 양치기 하는게 좋다고 해서 오늘 교보문고가서 n제만 40만원치 쇼핑함...
-
주말 저녁에만...
-
노베 현역 지금 시발점 완강률 32프론데 드릴 어떤것부터 풀어야 함? 5
ㅈㄱㄴ 그리고 드릴 너무 쉽다는데 괜찮나요?
-
ㄹㅇ 여친 때문에 뼈해장국집 안가고 마라탕 먹어야함? 쉽지 않네....... 서로...
-
중증외상센터 보고 싶다
-
개념원리 미적 보고 있는데 친구들이 끝내고 샤인미? 풀라는데 5
이게 쎈보다 어렵나요??쎈 친구꺼 뺏어풀엇는데 b스텝부터 마니 어렵던뎅 ㅠㅠ...
-
익일 2시까지 영업인데 익일 2시 16분까지 운영중지면 걍 오늘은...
-
하게 주어지는거 아님뇨? 다 같은학교에서 같은수업듣고 같은시험치고 같이 3년 다니는디
-
난 일단 수능은 잘보긴 했는데 학교다녔으면 행복했을거같은데
-
글을 쓰지 않으면 됩니다
-
뭔... 어차피 사가면 다시 정렬되니까 가져가라...
-
글 지우는거 1
천개넘게 밀리면 그냥 포기하게되더라구요
-
나 지금 현금바께업는데
-
.
-
수2 쓰기 어렵네
-
의대생되면 1
저절로 의사된다고 막연하게 생각했는데 막상 수술장면같은거보니깐 또 막막허네 솔직히...
-
다들 결혼 로망이 뭐임 10
저는 아내가 앞치마 입고 아침 차려 주는 거요 예쁜 애기도 있구.. 그럼 진짜...
-
07년생 재수 7
만약 26수능 보고 망하면 재수를 할 거 같긴한데.. 새교육과정 바뀌고나서 다시...
-
발저려 0
끄ㅏ아ㅏㅏㅏㅏㅏㅏ
-
딥시크는 안써봄
-
간택의 기준? 16
맘에 들면 다 납치하는 거지 형은 상남자라 망설임 따윈 없다
-
논술 반수 1
25 수능 미적 백분위 78 3등급입니다 6논술 하려고하는데 수1,2 미적 싹 다...
-
게이메타도 ㅈ같고 16
ㅂ그로도 ㅈ같고 비틱질도 ㅈ같음
-
인강이나 책이나 커리 추천해주시면 감사하겠습니다
-
목표는 상경이나 정외같은 높은과 뺀 조금 낮은 사회계열 학과고요... 내신은...
-
고고
-
오래걸리겟다
-
ㅇㅈ 7
떨린다..
-
할머니집최고장점 0
3분거리에 피시방있음
-
가능할까요?? 요즘 의대 증원되서 많이 간다는데,,. 그리고, 확통사탐인데 갈수...
-
하아 이 ㅈ망겜
-
우아
-
맨날 무지성으로 잇올 반복해서 다니면서 수면패턴도 이상해지고 4시간 정도씩 밖에...
-
내가 사람이다
-
갖고있는 분 닉이 완벽한데 ㅋㅋㅋㅌㅋㅌㅋㅌ 저건 뻇으면 안 될 듯
-
넵
-
뭔가 폭풍이 지나갔군요 13
지금은 잔잔한 바람인가요??
-
ㅇㅇ
-
눈아파 0
개그지 같은 눈 갈아끼우고 시퍼