[박수칠] 분산을 (편차)²의 평균으로 계산하는 이유
오늘은 어떤 주제로 글을 쓸까 고민하다가 예전에 봤던
조관 선생님의 포스팅 ( http://orbi.kr/0008006413 )
과 관련된 내용을 써보기로 했습니다.
평균, 분산, 표준편차를 열심히 공부한 학생이라면
한 번 쯤은 해봤을 고민이죠.
——————————————————————
왜 분산은 (편차)²의 평균으로 정의될까?
(편차의 절댓값)의 평균으로 정의하면 안되나?
——————————————————————
(변량)-(평균)으로 정의되는 편차는 변량이 평균보다 큰지, 작은지
그리고 평균으로부터 얼마나 떨어져 있는지를 나타내는 지표입니다.
그러다 보니 산포도 계산에 편차를 쓰는 것은 지극히 당연한 일이죠.
하지만 편차의 합은 0이기 때문에 편차의 평균 또한 0입니다.
이 때문에 편차를 제곱해서 0 이상의 값으로 바꾼 다음
평균을 계산하게 되고, 이를 분산으로 정의합니다.
여기서 편차의 제곱 대신,
편차의 절댓값을 쓰면 안될까요?
이를 알아보기 위해
세 변량 a, b, c (단, a < b < c)의 대푯값을 x로 두고
(편차)²의 평균과 (편차의 절댓값)의 평균을 조사해봅시다.
(1) (편차)²의 평균은 다음과 같습니다.
그리고 분자가 x에 대한 이차식임에 주목해서
완전제곱꼴로 변형하면 다음과 같습니다.
따라서 (편차)²의 평균은 일 때
즉, 대푯값 x가 a, b, c의 평균일 때 최소가 됩니다.
(2) (편차의 절댓값)의 평균은 다음과 같습니다.
그리고 분자가 일차식의 절댓값의 합임에 주목해서
분자로 만든 함수의 그래프를 그리면 다음과 같습니다.
따라서 (편차의 절댓값)의 평균은 x=b일 때,
즉 대푯값 x가 a, b, c의 중앙값일 때 최소가 됩니다.
대푯값 x가 평균일 때 (편차)²의 평균이 최소,
대푯값 x가 중앙값일 때 (편차의 절댓값)의 평균이 최소인 것은
n개 의 변량 에 대해서도 마찬가지입니다.
(3) (편차)²의 평균
따라서 (편차)²의 평균은 일 때,
즉 대푯값 x가 의 평균일 때 최소가 됩니다.
(4) (편차의 절댓값)의 평균
i) n이 홀수일 때
일 때 최소
ii) n이 짝수일 때
x가 구간 에 속할 때 최소
i), ii)로부터
(편차의 절댓값)의 평균은 또는 일 때
즉, 대푯값 x가 의 중앙값일 때 최소가 된다고 할 수 있습니다.
따라서 (편차)²의 평균은 대푯값이 평균일 때 최소이므로
평균 에 대한 분산을
으로 정의하는 것이 자연스럽다는 것을 알 수 있습니다.
또한 변량 의 중앙값이 일 때
(편차의 절댓값)의 평균
를 '평균편차'라고 하며, 임금 근로자 연봉 분포처럼
변량의 분포가 한쪽으로 치우친 경우에 산포도로 많이 사용합니다.
그리고 대푯값/산포도로 평균/분산(또는 표준편차)을 사용하면
중앙값/평균편차의 조합보다 공식의 변형이 자유롭다는 장점이 있습니다.
덕분에 분산을 { (변량)²의 평균 } - (평균)²으로 계산할 수도 있고,
미분/적분이 상대적으로 쉽죠.
추가적인 장점이 또 있는데
그건 제가 이해를 못해서...
[참고 자료] 기초통계학의 숨은 원리 이해하기 (김권현 저)
[알림] 박수칠 수학 미적분1-적분법 단원 부교재가 업로드 되었습니다.
본교재 문제에 수능/모평/학평 기출 54문제가 추가되었습니다.
다음에 작업할 단원은 미적분2-적분법입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내년되면 다 사라지나요?? 이거 진짜임??
-
고경제는 제가 가야함
-
1 2 3 권 이렇게 구성되어있던데 몇개년 기출인거에요?
-
눈오는데 면접 1
내일 서울대 면접인데 ㅈㄴ지방사는데 어카냐 비행기 결항당함
-
저희 부모님은 성적에 대해 별말 없으셨습니다 그냥 모의고사 보면 잘봤니? 정도랑...
-
현재 대성패스 끊었고 김승리t 이미지t 션티t 풀커리 타려고 합니다. 근데 수학...
-
1. 몇시에 일어나는 게 적당함? 2. 기껏 일찍 일어나놓고 아침부터 공부 안 하고...
-
찜질방에서 잔다음 내일 대전 들렸다가 올라오고 싶기도 하고..
-
그냥 아빠가 말하는 한마디 한마디가 거슬리고 예민하게 반응하게 되요... 재수허락...
-
머리가 띵~ 4
머리가띵
-
이번에 김범준T의 강의를 듣습니다. 근데 김범준T의 스타팅블록을...
-
ㅇ ㅇ?
-
부산까지는 얼마나 지연되려나..
-
못간다 학교이거
-
수위 높은 장면은 안 나오겠지? 예전에 이런 장면 나온적 있어서 먼가 안 될거...
-
어떻게 예상 커트라인이 417 ㅋㅋㅋㅋㅋㅋㅋ
-
어어
-
촤하하하하핫!!극락이구나
-
전투휴무 줘라 0
이거 출근 어떻게 함ㅠㅠ
-
걍 자휴때림 0
ㅇㅅaㅇ 못가 ㅅㅂ
-
온라인으로 등급,표점 확인하는 건 폰으로 ㄱㄴ?
-
모닝여캐일러투척 18
애니는 안 보고 프사로 쓰는 사람들 보면 괘씸하거든요
-
사장님 0
저도 오늘 출근 하기 싫어요잉,,,,
-
얼버기 2
얼리 버드 기상
-
먹어도 되려나 소리때문에 흠.. 이정도는 오케이인가
-
학교 휴업하네 0
-
이번에 수1,수2 김범준T 듣는데, 스타팅블록2~5등급이 듣기에 좋다고 하시더라구요...
-
한국식 세는 나이로 25살에 교수. 남학생이 군대 갔다 왔다고 치면 4학년때 자신과...
-
승쫑인데 롤 10연패해서 밤새가지고 어떡하지 싶었는데 이런일이?
-
43이 되는 가능세계는 없겠지?? 아무리 높아도 42지??
-
돌아가는 분위기가 매우 흥미롭군요 정부가 의평원 무력화 하는걸 포기했네요? 그런데...
-
8일뒤성적표공개 0
시간빠르뇨
-
형등 급해요 0
신검 30분 지각할거같은데 괜찮음?
-
9시등교인데 10시 등교로 바뀜
-
강제얼버기 4
두시간자고기상
-
6시 기상할까 나눠서 6시반기상/6기기상은 오히려 수면패턴에 방해가 될지도
-
안돼 눈온다 1
살려줘
-
미적분 80 1
2등급 가능성 얼마나 있을까요?
-
필자는 매우졸림
-
화작 확통 생윤 윤사 24222 원점수 87 66 36 39 백분위 89 67 89...
-
축하해줘 14
히히
-
히히 첫 ktx 12
-
난 진촤 독서는 7
배경지식이 매우매우 중요하다고 생각함 배경지식을 풍부히 알고있는 상태로 지문을...
-
얼버기 12
속이ㅈ됐습니다
-
쿨
-
사람아니야
-
설레는 것이와요
-
얼리버드 파이팅 19
냉기가 느껴지네요 오늘 하루도 열공하세요~
ㅋㅋㅋㅋ 오르비스티커 너무 귀여워여
그러니까요... 진짜 예쁘게 잘나왔어요.
그 외에도 확률변수에 대한 적률 적률생성함수 중심적률등과도 관련이 있지 않을까 생각됩니다.
물량공급님 외계어도 쓸 줄 아셨군요.
좀 배워야겠다...
적률생성함수라는 마법의 도구가 있더라구요
찾아보니 학부 확통 과목에서 배웠던 함수네요.
지금 보니 뭔 얘긴지 하나도 모르겠음 ㅎㅎ
최소점이 평균값이기 때문에 제곱을 쓴다는 건 결과론적인 해석이 아닐까요?
제곱을 써야만 하는 수학적 필연성이랄지, 이런게 있으면 좋을 것 같은데요
예를 들어, 정규분포 함수의 식에는 제곱을 이용한 표준편차가 들어가죠. 만약 표준편차를 다르게 정의했을 때 같은 식을 유도할 수 있는지, 그렇지 않다면 왜 그럴 수밖에 없는지 같은 것들 말입니다
본문의 내용은 결과론적인 해석이라기 보다
{ (변량-평균)²의 합 } / (변량 개수)를 분산으로 정의한 이유의
일부라 할 수 있습니다.
근본적인 이유로 들어가자면
{ (변량-대푯값)²의 합 } / (변량 개수)를 최소로 하는 대푯값이 평균이고,
이 평균을 모집단과 표본의 대푯값으로 쓰면 모평균의 가장 합리적인 추정치로
표본평균이 똭~ 나타납니다.
이 부분을 설명하려면 '최대우도추정법'이라는 걸 알아야 하는데
여기서 굳이 설명할 필요도 없고, 저도 잘 모르거든요 ^^;
그래서 '고등학교 수준에서 이 정도 설명이면 충분하겠다'
싶은 선에서 끝냈습니다.
이런 것 보면 아무 호기심 없이 그랬구나...그렇구나...하고 받아들이는 제 자신이 다행스럽네요. 문과여서 여태 통계문제 풀면서 저런 증명이나 원리를 몰라서 틀린 적도 없고 개이득
몰라도 되는 건 이과도 마찬가지입니다 ^^
그냥 궁금해할 수험생들을 위해 정리한거예요~
loss funtion?
손실함수라...
6시그마 교육받으면서 배웠던 건데
갑자기 왜 나올까요? ㅎㅎ
경영쪽 아니고 경제학부 통계시간에 교수님께 배운건데..
추정량과 모수의 차이를 나타내는 함수를 loss function 이라 하지않나요,,? 이거 배우면서 글에 나온 내용도 같이 알게되고 했던 기억이 나서요~
아~ 용어만 같고, 정의가 다른가 봅니다.
제가 배웠던 것은 품질관리쪽에서 손실 비용 계산에 쓰는 함수거든요.
이유식님이 얘기하신 손실함수까지는 공부를 못해봤어요 ^^
저도 맛보기정도만 한 비루한 학부생입니다 ㅠ
댓글 달아주셔서 감사합니다.
헐 신기하네요 이거 궁금했었는데 감사해요ㅋㅋㅋ 오 신기하다 맨날 하필 왜 제곱일까....이랬었는데
제가 기다렸던 반응이 드디어 나왔군요.
감사합니다 ㅎㅎ
절대값을 왜 안쓸까 했는데 쓰는데가 있기도 하군요
그러게나 말이에요.
저도 참고자료 보면서 처음 알았어요~
조만간 책나오면 살건데 박수칠님 글 너무 도움됩니다 모든글 지우지 말아주세요ㅠ
안지울테니 걱정마세요~ ^^