(안녕맨)<화요 수학칼럼 - 적분이란? >
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
10. 외워두면 좋은 면적 공식 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8759526&showAll=true
11. 2차 곡선에서 접선의 방정식 공식화 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8766382&showAll=true
12. 미분이란? : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8776957&showAll=true
cf) <8월 1일 대치동 오르비 학원 개강 안내>
8월 1일 (다다음주 월요일)부터 월수금 8주 커리로 안녕맨의 끝장인강 총정리 & 안녕맨의 손으로 만든 2017 기출시험지 10회 자기시험지 만들기 현강이 시작합니다
관리자님 말씀으로는 오르비 역대 최고의 시설이라고 하네요 (완전 모던하게 꾸몄대요 ㅎ)
학원 위치는 대치동 은마아파트 입구 사거리 교차로 근교 메인대로변에 있습니다
(교차로에서 대치사거리 쪽으로 걸어서 3분거리 ) 주소는 대치동 931-22
시간은 문과 6시~8시 // 이과 8시~10시 구요 한시간은 끝장인강 잠시 휴식후 나머지 한시간은
기출시험지 풀이 하는 수업을 하게 됩니다
8월 1일 첫수업은 무료 강의 인데 그날 오시는분들은 반드시 안녕맨의 손으로 만든 2017 대 수능대비 기출시험지 1회를 풀고 오셔야 합니다 (이과는 http://class.orbi.kr/class/776/ ,
문과는 http://class.orbi.kr/class/777/ 여기서 자료 다운 받으시고 진행하시면 됩니다)
당일 수업 교재는 임시로 대여 해 드립니다(물론 수강 등록을 하시면 무료로 드립니다)
참고로 무료 개강 수업 후 조 추첨해서(네이버 사다리를 돌릴거에요) 문이과 각각 한분씩
컬쳐랜드 문화상품권 1만원권 1매를 선물로 드릴거에요 ㅎ
자세한 정보는 http://class.orbi.kr/group/85/ 여기서 확인하시면 됩니다
아무쪼록 많이 참석해 주셨으면 하는 바램입니다 감사합니다 꾸벅~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
恋するおとめの作り方 사랑하는 여자아이를 만드는법 강력 추천드립니다 시간나시면 한번 보시길
-
음하하하 돈까스파스타바게트
-
쌍지런데 모고 2등급정도 이기상 이모다도 45이상 많음 근데 세지4등급...
-
친친은 하루에 15개씩 조지는데 본계는 1년에 3개씩 올림 멀어진 사람이 너무 많다보니 어색함뇨
-
애니 미쳤습니다 예전에 징송의 프리렌인 줄 알았다는... 다음 언제 나올련지
-
인싸들이 내가 오르비에 글 쓰는 이유 이해 못하는데 5
인싸들 스토리, DM = 오르비 글, 댓글 ….인스타는 올려봤자 뭐 몇명 보지도...
-
무슨 일이에요 13
나도 알려줘
-
노상방뇨 4
상방이없단거임뇨 노상방뇨
-
평균 컷 몇 예상?
-
뇨뇨거리니까 9
배뇨마려움 그만좀 글좀 싸라 ㄹㅇ
-
올해초였나 그 때도 몇 명 썼었는데 돌고도는유행이노
-
작년보다 입결이 떨어진다는 말도 있고 올라간다는 말도 있어서 너무 후달리네요.....
-
중2때 겁나 했던 트위터에서 알게 된 트친이 고등학교때 알고 보니 한 살 후배였던...
-
블루록 저번주걸 안봤네 11
캬캬캬
-
난 잘때 판타지 캐릭터라던지 실존하지 않는 것들이면 꿈 자체를 못 꾸는데 어떻게 이게 가능한거임?
-
안녕하세요? 국어 강사로 활동하고 있는 Mantra입니다. 19 20 21 수능...
-
뇨 말투 누가 시작했냐 10
아오
-
수능 끝나고 즐겼으니 갓생달릴차례인데 아이디어가 고갈남 저탄수로 먹을건데...
-
서성한 가고싶습니다 ㅠㅠ (확통은 실채점 나오면 백분위 약간 떨어질것 같긴합니다..)
-
뇨 말투 이거 3
진짜 ㄹㅇ 개쌉 중독성 있음뇨
-
스카 화장실 오는데 뒤에서 저 부르더니 저기..혹시 임용 2차 준비하시나요?...
-
날씨뭐냐 ㄷㄷ 0
윤석열 개새끼같네 이거 ㅋㅋㅋㅋㅋ
-
이건 진짜임뇨... ..
-
가서 레이저로 상처주고 치료하면서 안티에이징하던데뇨
-
10km 완료 7
-
07이고 내년에 과탐 선택 고민중인데 화2를 할까 생각중인데 화2가 만점 목표면...
-
x에 대한 항등식을 세우면 안 되겠군
-
재수해서 과기대 기계공학과 재학중인데요 성적은 언미생지 87 85 2 92 93...
-
5달정도노력하면외모백분위를4까지올릴수있지않을까기대중임뇨
-
2020~2024 국어 독서 영역 수능 기출에서 한 지문만 나온대요 모든 지문을 다...
-
린 귀여움 17
-
하체 미친 7
개힘드네 다리에 주기적으로 힘풀리는거 억지로 붙드는중 집까지 또 한 20분 걸어야하는데 ㅋㅋㅠ
-
사실 안들어봄 들을 가치 있나용 강사 추천도 해줘 ㅜ
-
그래야만 한다
-
진짜에반데 오늘이거함..
-
난 귀여움 2
우
-
시발 말이 안 됨 ㅋㅋㅋㅋㅋ
-
보내주세요
-
내마지막신캐는에코임뇨 옵1에서 없데이트당하다가 옵2와서 접었는데 왤케 열심히 업데이트함뇨;;
-
예전에 파급n제 기하내고 내년부터는 다른과목도 출판한다고 들었는데 파급n제 출판안했나요?
-
빠대 50번 승리 뭐냐 ㅅㅂ
-
기차를 타야하나 2
렛츠고 애버랜드
-
어디까지 갈 수 있을까요 사탐입니다
-
ㄹㅇ버그임뇨
-
참고로 저는 확률과 통계 선택자이고 수학은 강민철 듣습니다
-
수학질문ㄴ 4
첫번째 식을 두가지방법으로 푼건데 어디서 잘못됐길래 답이 다르게 나온눈지 모르겠어요ㅠㅠ
-
더 중요한 사실 3
올해 페스페 애니 나옴
안녕맨님 궁금한게있는데
함수 f a부터 b까지 의넓이가 왜 f를적분한 함수의
함숫값의 차로 구할수있나요?
예를들면 일차함수의 면적을구하는데 이차함수의
함숫값의 차가 일차한수의 면적이되는게 신기해요
일차함수의 함수값은 길이구요 면적은 길이를 두번곱해서 구해요 길이가 1차면 면적은 길이의 제곱이니깐 2차가 되요
이해가 잘않되요
자세히 설명 드릴게요
인테그랄은 원래 무한급수죠 연속된 무한개의 값을 더할때 쓰는거구요
우선 구분구적을 이해할때 길이가 합해서 면적이 되는게 절대 아닙니다
즉 f(x)를 더해서 면적을 만드는게 아니라 아주 얇은 직사각형을 무한개 더해
서 면적을 구한다고 생각하시면 되요
이때 세로에 해당되는게 f(x)구요 아주 작은 가로에 해당되는게 dx 입니
다 직사각형은 가로와 세로를 곱하는데
여기서 가로에 해당되는 dx가 x에 관한 1차식이라고 생각하시면
실제 면적을 구할때는 f(x)보다 한차수가 높아지죠 (적분하게 되면 차수
가 한차수 높아집니다) 그래서 면적이 그렇게 되요
그니깐 함수값이 1차이면 면적은 2차식이 되고
함수값이 2차이면 면적은 3차
즉, 함수값보다 차수가 한차수 높은 면적으로 나옵니다
서로 빼는거는 구분구적의 계산이 위의 칼럼대로 부정적분해서 양끝값더
한것의 차이라는게 증명됬기 때문에 그렇게 쓰는거구요
그거 교과서에 있어요
쉽게 생각하면 되요
F(x)라는것은 0부터 x 까지 f(x) 그래프 아래의 면적을 의미해요
그러니 a부터 b까지의 면적은 0부터 b까지의 면적에서 0부터 a까지의 면적을 빼면 되므로 F(b)-F(a) 가 되는거죠
대학 미적분학1에서 다루는 내용이군요
hello man(bjh)쌤 홧팅!!!! ^^
감쌈다 정답이오쌤님ㅎ
글씨옆에 잇던게 눈에익어서 봣더니 벤젠(C6H6)였어....
와..
미분은 그냥 괜찮네이랬는데
적분은 내가 강의할때 하는말 다담겨있네ㄷㄷ추천합니다 글 정말 잘읽었어요
감사합니다 ㅎ
공감 ㅋㅋㅋㅋ 과외준비할때 다른것도 읽어보구 참고해야겠어요 안녕맨쌤파이팅하세요!
네 약간이라도 도움이 됬으면 좋겠습니다ㅎ 감사합니다
인티그럴?
쌤 궁금한게 책에 나오지도 않았는데
어떻게 깊이있는 개념을 터득하신겁니까?ㅠ
완죤 부럽습니다.. 책에나온개념도
완전히 이해못하는디ㅠ
구지 말하자면 연륜이죠 ㅎ
제가 처음 과외했던 친구가 78년생 고3 3명이었어요 ㅎ
그 이후 5년정도 휘트니스센터할때 빼고는 수학을 놓은적이 없네요 ㅎ
구지--->굳이..ㅜㅜ
아 넵 ㅠㅠ
좋은 글 감사합니다 ㅎㅎ
.도움이 됬다니 다행이네요 ㅎ