(안녕맨)<화요 수학칼럼 - 적분이란? >
![](https://s3.orbi.kr/data/file/united/2038703877_jlPAdSO5_ECA0951.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_etjvRUb1_ECA0952.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_G01ZFrTn_ECA0953.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_wjMyoKAN_ECA0954.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_b2JvNVSU_ECA0955.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_Ey604DMf_ECA0956.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_2aSDvRif_ECA0957.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_73qjLJ2g_ECA0958.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_GVJgnqCF_ECA0959.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_mtWfi7RZ_ECA09510.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_lNIZ1vW4_ECA09511.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_RzMZTo9K_ECA09512.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_lTJWqfnB_ECA09513.jpg)
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
10. 외워두면 좋은 면적 공식 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8759526&showAll=true
11. 2차 곡선에서 접선의 방정식 공식화 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8766382&showAll=true
12. 미분이란? : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8776957&showAll=true
cf) <8월 1일 대치동 오르비 학원 개강 안내>
8월 1일 (다다음주 월요일)부터 월수금 8주 커리로 안녕맨의 끝장인강 총정리 & 안녕맨의 손으로 만든 2017 기출시험지 10회 자기시험지 만들기 현강이 시작합니다
관리자님 말씀으로는 오르비 역대 최고의 시설이라고 하네요 (완전 모던하게 꾸몄대요 ㅎ)
학원 위치는 대치동 은마아파트 입구 사거리 교차로 근교 메인대로변에 있습니다
(교차로에서 대치사거리 쪽으로 걸어서 3분거리 ) 주소는 대치동 931-22
시간은 문과 6시~8시 // 이과 8시~10시 구요 한시간은 끝장인강 잠시 휴식후 나머지 한시간은
기출시험지 풀이 하는 수업을 하게 됩니다
8월 1일 첫수업은 무료 강의 인데 그날 오시는분들은 반드시 안녕맨의 손으로 만든 2017 대 수능대비 기출시험지 1회를 풀고 오셔야 합니다 (이과는 http://class.orbi.kr/class/776/ ,
문과는 http://class.orbi.kr/class/777/ 여기서 자료 다운 받으시고 진행하시면 됩니다)
당일 수업 교재는 임시로 대여 해 드립니다(물론 수강 등록을 하시면 무료로 드립니다)
참고로 무료 개강 수업 후 조 추첨해서(네이버 사다리를 돌릴거에요) 문이과 각각 한분씩
컬쳐랜드 문화상품권 1만원권 1매를 선물로 드릴거에요 ㅎ
자세한 정보는 http://class.orbi.kr/group/85/ 여기서 확인하시면 됩니다
아무쪼록 많이 참석해 주셨으면 하는 바램입니다 감사합니다 꾸벅~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 26
옛날 사진들
-
수많은 기만자들의 기만질에 정신을 차리지 못하겠습니다 0
가면무도회 머임 ㅆㅍ
-
나도 ㅇㅈ 6
-
반쪽ㅇㅈ 10
예전에했었나
-
그렇게들알아라 지금하면비교당해서 자살각이다
-
ㅇㅈ 0
하사십 시즌2 작년껀데 1문제풀고 드랍 ㅋㅋ 사실 123 다사버렸다가 1,3만...
-
아오 2
교재보는거포기 족보나외워야지
-
현역 땐 엔축, 영인자, 주인공함수 잡기 이런 테마 문제 위주로 풀고, 기출 변형인...
-
이거 개궁금한데 과금해볼까
-
ㅇㅈ 21
오랜만에 오르비들옴 대학 또 합격하고나니.. 재밌는게 많다 다들 집밖을 나가라
-
무슨메타임 1
ㅇㅅㅇ
-
키는봄
-
??
-
수열 자작문제 10
어제 올렸던 함수 추론 문제가 반응이 좋아서 하나 더 올려봅니다 이것도 완성도가...
-
안녕하세요. 올해 수능을 나름 잘 봤다고 생각했는데 진학사 성대 공학계열 모의지원이...
-
우하핳
-
독거미 f87 pro 황축을 두드릴 때마다 사정하는 병에 걸렸음뇨…
-
집은 숭실이랑 훨 가까움 근데 숭실은 딱 컴공만 잘 나가는 건가요…?
-
20칸 쓸수도 있을것 같은데;;
-
얼굴이못생겨도키크면커버됨 근데키작으면잘생기지않는이상 커버불가능임 비율까지망하면...
-
아.
-
인증메타 개씹처노잼이니까
-
ㄹㅇ임 남녀노소 다 싫어함 길어봤자 한달
-
하 공부도못하고얼굴도별로인나는어카냐진짜
-
ㅇ.ㅈ. 15
쫄려서 정면샷은 무리
-
178 아버님 어머님 고맙읍니다..
-
국어만 불이고 수학이물이거나 국어만물이고 수학이불인경우는 통합이후로 없음?
-
진심이다
-
고닉ㅇㅈ특 6
나보다못생긴사람없음
-
ㄹㅇ 생각의자...
-
난 너무 못생겨서 꿈도못꿈
-
설낮공 vs 건수의 12
머리는 건수의인데 설뽕에 가득참…. 본인이라면 어디가실거같으신지
-
ㄱㅁ이론..
-
ㅇㅈ 23
왼쪽이 저임
-
공부하러 감 1
시험 전날에 옯질하고 있음 안 될 거 같음..
-
이렇게 다들 사탐런하면 사탐 어려워지는거 아닌가요.. 10
하루에 사탐에 3시간정도 투자하면 어려워져도 해볼만하려나
-
아가 취침 6
잘자
-
. 0
.
-
ㅇㅈ 12
알아서식별해보셈
-
진짜 자기관리만 잘해도 평타는 먹고 들어가니깐 내 전전글 보셈 ㄹㅇ 남성분들은...
-
뱃지 보이나요? 11
달렸는지 모르겠어요 지1 서울 배성민 이미지
-
난 내 사진이 없음.
-
ㅈㄱㄴ
-
과외 하고싶긴한데 집이랑 대학이 거리가 멀어서 집 근처에 있는 학생을 가르치기도...
-
순식간이네
-
나 딱알았어 2
ㄱㅁ 치는애들이 쌉기만러임 ㄱㅁ칠때 쌉기만러들 표정
-
어떻게 하는게 효율적이고 좋을까요?? 강의라던지,공부할 부분이라던지.. 내신 아니고...
-
외울거 ㅈㄴ많아보이는데 결국 꾸역꾸역 외워지겠죠?? 유튜브 보는데 어질어질하던데.....
-
사수생 ㅇㅈ 10
팀 04의 출격
안녕맨님 궁금한게있는데
함수 f a부터 b까지 의넓이가 왜 f를적분한 함수의
함숫값의 차로 구할수있나요?
예를들면 일차함수의 면적을구하는데 이차함수의
함숫값의 차가 일차한수의 면적이되는게 신기해요
일차함수의 함수값은 길이구요 면적은 길이를 두번곱해서 구해요 길이가 1차면 면적은 길이의 제곱이니깐 2차가 되요
이해가 잘않되요
자세히 설명 드릴게요
인테그랄은 원래 무한급수죠 연속된 무한개의 값을 더할때 쓰는거구요
우선 구분구적을 이해할때 길이가 합해서 면적이 되는게 절대 아닙니다
즉 f(x)를 더해서 면적을 만드는게 아니라 아주 얇은 직사각형을 무한개 더해
서 면적을 구한다고 생각하시면 되요
이때 세로에 해당되는게 f(x)구요 아주 작은 가로에 해당되는게 dx 입니
다 직사각형은 가로와 세로를 곱하는데
여기서 가로에 해당되는 dx가 x에 관한 1차식이라고 생각하시면
실제 면적을 구할때는 f(x)보다 한차수가 높아지죠 (적분하게 되면 차수
가 한차수 높아집니다) 그래서 면적이 그렇게 되요
그니깐 함수값이 1차이면 면적은 2차식이 되고
함수값이 2차이면 면적은 3차
즉, 함수값보다 차수가 한차수 높은 면적으로 나옵니다
서로 빼는거는 구분구적의 계산이 위의 칼럼대로 부정적분해서 양끝값더
한것의 차이라는게 증명됬기 때문에 그렇게 쓰는거구요
그거 교과서에 있어요
쉽게 생각하면 되요
F(x)라는것은 0부터 x 까지 f(x) 그래프 아래의 면적을 의미해요
그러니 a부터 b까지의 면적은 0부터 b까지의 면적에서 0부터 a까지의 면적을 빼면 되므로 F(b)-F(a) 가 되는거죠
대학 미적분학1에서 다루는 내용이군요
hello man(bjh)쌤 홧팅!!!! ^^
감쌈다 정답이오쌤님ㅎ
글씨옆에 잇던게 눈에익어서 봣더니 벤젠(C6H6)였어....
와..
미분은 그냥 괜찮네이랬는데
적분은 내가 강의할때 하는말 다담겨있네ㄷㄷ추천합니다 글 정말 잘읽었어요
감사합니다 ㅎ
공감 ㅋㅋㅋㅋ 과외준비할때 다른것도 읽어보구 참고해야겠어요 안녕맨쌤파이팅하세요!
네 약간이라도 도움이 됬으면 좋겠습니다ㅎ 감사합니다
인티그럴?
쌤 궁금한게 책에 나오지도 않았는데
어떻게 깊이있는 개념을 터득하신겁니까?ㅠ
완죤 부럽습니다.. 책에나온개념도
완전히 이해못하는디ㅠ
구지 말하자면 연륜이죠 ㅎ
제가 처음 과외했던 친구가 78년생 고3 3명이었어요 ㅎ
그 이후 5년정도 휘트니스센터할때 빼고는 수학을 놓은적이 없네요 ㅎ
구지--->굳이..ㅜㅜ
아 넵 ㅠㅠ
좋은 글 감사합니다 ㅎㅎ
.도움이 됬다니 다행이네요 ㅎ