[박수칠] 놓치기 쉬운 개념/유형 3가지 (2편)
칼럼으로 들어가기 전에 자랑부터!
드디어 박수칠 수학 미적분1, 2 부교재 작업을 끝냈습니다 ^^v
본교재에 수록된 문제와 함께
수능/모평/학평 기출 위주의 연습문제를 추가했구요,
연습문제는 미적분1 195문항, 미적분2 179문항으로 이루어져 있습니다.
물론 연습문제 해설도 포함되어 있구요.
부교재는 아래의 링크에서 다운받을 수 있습니다.
(대단원별로 작업하다 보니
미적분1, 미적분2 각각 5개의 파일로 나뉘어 있습니다.
조만간 파일 통합 작업을 해서 미적분1, 미적분2 각각 2개의 파일로
정리하도록 하겠습니다.)
이제 자랑 끝! 본론 시작입니다.
3주 전에 아래 칼럼을 올렸었는데
읽어주신 분들의 반응이 아~주 좋았습니다.
[놓치기 쉬운 개념/유형 3가지]
그래서 같은 제목으로 한 번 더 쓰기로 했죠~
앞으로도 꺼리 생기면 종종 쓸거구요,
본문과 관련된 질문은 다른 수험생들도 참고할 수 있도록
쪽지 대신 댓글을 이용해주시길 부탁드립니다.
1. , 의 의미
다음은 2014학년도 3월 학평 A형 문제입니다.
등차수열의 합과 수열의 극한이 결합된, 평범한 문제로 보이는데
의외로 틀린 학생들이 많아서 놀랬던 문제입니다.
극한의 일반항에 포함된 에 낚여서 그런건지
틀린 학생들은 전부 , 을 다음과 같이 해석했더라구요.
2n에 집중한 나머지 짝수 번째 항들만 더한 것이죠.
하지만 , 으로부터 , 을 만들어내려면
‘대입’을 이용해야 합니다. 주어진 식에 n 대신 2n을 대입해서
으로 만들어야죠.
추가로 은
수열 이 공차 6인 등차수열임을 이용해서
다음과 같이 계산할 수 있습니다.
(참고로 위 문제의 답은 6입니다.)
2. 두 곡선 사이의 넓이 구하기
두 곡선 y=f(x), y=g(x)와 두 직선 x=a, x=b로 둘러싸인 도형의 넓이는
다음과 같이 표현할 수 있습니다.
이 식을 계산하려면 두 곡선 y=f(x), y=g(x)의 교점의 x좌표와 함께
구간 [a, b]에서 f(x), g(x)의 대소도 알아야 합니다.
예를 들어 두 곡선 y=f(x), y=g(x)의 구간 (a, b)에서의 교점이 하나 뿐이고,
그 교점의 x좌표는 c이며, 구간 (a, c)에서 f(x) ≥ g(x), 구간 (c, b)에서
f(x) ≤ g(x)가 성립한다면 도형의 넓이는 다음과 같이 표현됩니다.
그런데 두 곡선 y=f(x), y=g(x) 사이의 넓이를 구할 때
실제로 필요한 것은 두 곡선의 교점의 x좌표 뿐이고,
f(x), g(x)의 대소를 비교하는 것은 사족입니다.
왜냐하면 구간 (a, c)에서 f(x) > g(x)가 성립할 때,
다음의 식들은 모두 두 곡선 y=f(x), y=g(x)와 두 직선 x=a, x=c로
둘러싸인 도형의 넓이를 나타내기 때문입니다.
g(x)-f(x)를 a부터 c까지 적분하면
두 곡선 y=f(x), y=g(x)와 두 직선 x=a, x=c로 둘러싸인 도형의 넓이에
-를 붙인 것과 같기 때문에 절댓값 기호를 씌우면 도형의 넓이가 되는 것이죠.
즉, 구간 (a, c)에 두 곡선 y=f(x), y=g(x)의 교점이 없다면
f(x)-g(x), g(x)-f(x) 가운데 어느 쪽을 a부터 c까지 적분하든
절댓값 기호만 씌우면 두 곡선으로 둘러싸인 도형의 넓이가 된다는 뜻입니다.
따라서 두 곡선 y=f(x), y=g(x)의 구간 (a, b)에서의 교점이 하나 뿐이고,
그 교점의 x좌표가 c라면 두 곡선 y=f(x), y=g(x)와 두 직선 x=a, x=c로
둘러싸인 도형의 넓이는 다음과 같이 표현됩니다.
그럼 예제를 봐야죠.
다음은 2009학년도 수능 9월 모평 가형 문제입니다.
딱 봐도 곡선 개형 그리기가 상당히 어려워 보입니다.
일단 곡선과 직선 모두 원점에 대해 대칭이므로
x≥0일 때 곡선과 직선으로 둘러싸인 부분의 넓이를 구해서
두 배하면 된다는 것은 쉽게 알 수 있습니다.
그럼 곡선과 직선의 교점 좌표부터 구해봐야죠.
x ≥ 0일 때 곡선과 직선 교점의 x좌표가 0, 이므로
곡선의 방정식과 직선의 방정식의 대소를 비교할 필요 없이,
도형의 넓이는 다음의 식으로 구할 수 있습니다.
3. 모집단으로부터 추출된 표본의 표본비율에 대한 확률 문제
먼저 (1)부터 살펴봅시다.
생산된 제품 가운데 5개를 선택하는 시행은
1개를 선택하는 시행을 5번 반복하는 것입니다.
그리고 공장에서 생산된 제품의 개수가 굉장히 많다고 보면
1개를 선택하는 각각의 시행은 모두 동일한 조건을 가진다고 볼 수 있습니다.
(생산된 제품이 100개라고 가정하면 불량품은 25개입니다.
그리고 시행에서 선택된 5개의 제품이 모두 불량품이라면
남은 제품 95개 가운데 불량품은 20개,
불량품의 비율은 약 21.05%입니다.
반면 생산된 제품이 100만개라고 가정하면 불량픔은 25만개입니다.
그리고 시행에서 선택된 5개의 제품이 모두 불량품이라 하더라도
남은 제품 999,995개 가운데 불량픔은 249,995개,
불량품의 비율은 약 25.00%입니다.
따라서 제품 개수가 굉장히 많다면 제품 1개를 선택하는 시행 5번은
불량품의 비율이 일정한, 동일 조건에서의 반복 시행이라 할 수 있습니다.)
그렇다면 (1)은 같은 시행을 5번 반복하는 것으로 볼 수 있고,
불량품이 2개일 확률은 다음과 같이 독립시행의 확률로 계산할 수 있습니다.
다음으로 (2)를 살펴봅시다.
(1)과 마찬가지로 생산된 제품 가운데 4800개를 선택하는 시행은
1개를 선택하는 시행을 4800번 반복하는 것이고,
각각의 시행은 동일한 조건을 가진다고 볼 수 있습니다.
따라서 불량품이 1140개 이상 1260개 이하일 확률은
다음과 같이 독립시행의 확률로 표현할 수 있습니다.
이걸 손으로 계산하려면 주금이쥬~
이럴 때는 독립시행의 결과에 대한 확률분포인 이항분포와
시행횟수가 충분히 큰 이항분포의 근사인 정규분포를 이용해서
확률을 계산해야 합니다.
1개를 선택하는 시행을 4800번 반복했을 때 불량품이 X개 뽑혔다면
확률변수 X는 이항분포 B(4800, 1/4)을 따릅니다.
그리고 시행횟수가 충분히 큰 것도 아니고 엄청나게 크기 때문에
이 이항분포는 정규분포 N(1200, 900)으로 근사할 수 있습니다.
이때, 구하려는 확률은 P(1140≤X≤1260)이고,
정규분포 N(1200, 900)으로 표준화해서 계산할 수 있습니다.
그런데 (2)는 풀이 방법이 한 가지 더 있습니다.
바로 표본비율의 분포를 이용하는 방법이죠.
공장에서 생산된 제품 전체에서 불량품이 차지하는 비율 1/4은
모비율 에 해당됩니다.
그리고 선택된 4800개의 제품 가운데 불량품의 비율은
표본비율 에 해당되죠.
따라서 선택된 4800개의 제품 가운데
불량품이 1140개 이상 1260개 이하일 확률은
이 1140/4800 이상 1260/4800 이하일 확률과 같습니다.
그리고 표본비율 의 평균과 분산이 각각
,
이므로 표본비율은 정규분포 을 따르고,
확률은 다음과 같이 계산할 수 있습니다.
이처럼 모집단으로부터 추출된 표본의 표본비율에 대한 확률은
표본의 크기가 작을 때는 독립시행의 확률로 접근하고,
표본의 크기가 충분히 클 때는 이항분포에서 정규분포로의 근사
또는 표본비율의 분포로 접근할 수 있습니다.
(참고로 문제 (1)은 (2)처럼 이항분포에서 정규분포로의 근사
또는 표본비율의 분포로 접근할 수 없습니다.
왜냐하면 정규분포나 표본비율의 분포 모두 연속확률분포인데
연속확률분포에서 확률변수가 특정한 값을 가질 확률은
0이기 때문입니다.
문제 (2)의 질문을 보면 확률변수가 특정한 값을 가질 확률이 아니라
특정 범위에 속할 확률을 물어보는 것도 이런 이유입니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언매 공부법 0
평가원 언매 항상 0-3틀인데요, 언매는 2학년 내신 때만 하고 지금까지 쭉...
-
왜 금액이 다르냐 농협에 돈을 넣었으니까 올원뱅크가 맞을텐데 그럼 토스 얘네는 왜...
-
김승리 듣고있었는데, 지금 며칠 안 남은 상태에서 수특수완 보는건 불가능 할 것...
-
무조건 곡예사인게 조광일이 요즘 유튜브에서 안 보이잖음ㅇㅇ
-
진짜비염존나싫다 0
일부러 룸메 잘때들어왓더니 콧구멍으로 피리불면서 자 난어케자노..
-
적중고트였는데
-
소설책이나 한 권 더 살걸
-
벌목정정이랬거니 아람도리 큰솔이 베혀짐즉도 하이 골이 울어 메아리 소리 쩌르렁...
-
여태까지 쓴 글 지우느라 죽는 줄 알았네 미리미리 지울껄
-
얼버기 0
레전드얼버기 어제일찍자서일찍일어남
-
이거 못고치나
-
관동별곡 유씨삼대록 옥린몽 세개중에 하나는 나올려나 2
문학중에 이거 3개만 안했는데 일어나서라도 할까 ㅅㅂ
-
자살 마렵네 0
여간 일도 아니지만
-
흠
-
옛날에 오르비에서 강의 하셨는데 지금은 어디서 강의하시는지 아시나요..
-
어릴때부터 꿈이었던 교대 입학하고 실습 가보니 적성에도 맞는 것 같고, 입결이야...
-
평가원보다 어려운데 정상인가요? 어려운3점부터 막히거나 못푸는데 정상인가요?...
-
이제 수능이 D-2밖에 남지 않았습니다. 이에 수능을 많이 경험한 저의 수능날...
-
아존나춥다 0
어차피 못잘거 공부라도 하려고 안들어갓는데 걍 통금풀리는시간만기다리는사람됨
-
컴팩트한 기출 1
1월 전까지 수1 기출을 한바퀴 돌리려 하는데 컴팩트한 인강강사 기출 뭐가있나요..?
-
작년말고 28번은 할만함? 26,27,29,30번은 4등급기준 어느정도임
-
아님 안 붙이고 수험표 뒤에 벅벅 써도되는건가요? 수험표 뒤에 쓰는 것도 검사받아요?
-
오늘 2시간만 자고 내일부터 10시에 자는 거 어케 생각함?
-
화이트헤드 나올지는 모르겠는데 나오면 헤겔 시즌2가 될만한 잠재성이 있어서 좀 무섭네요..
-
내년 상반기에 헌급방 지정 박고 입대할거같은데 군수 할만 하나요? 그리고 군수한다면...
-
11 12 1
주차장에서 담배 피는데 뒤에서 어느 집의 아버지와 꼬맹이 딸 둘이 얘기하며 오는...
-
채택완
-
04들아 올해 가자
-
뭔가 까마득한 느낌임. 내 학창시절을 지배했던 15개정교육과정도 이제 정말 끝물이구나.
-
첨에 강민철 독서 문학 둘 다 들었는데 독서는 잘 모르겠고 문학은 되게 유용했어요!...
-
어떻게 해야 잘할까요.. 함수~순열조합이 시험범위인데 함수는 걱정없는데 순열조합은...
-
https://youtu.be/RYHOoAZSVUM 영어 듣기 인트로 브금......
-
긴장되겠다 2
람쥐
-
장수생은 대학 가면 동아리나 미팅도 못한다는 이야기가 있던데 20
이거 진짠가요
-
전개 잘 되다가 결말이 좀 이상한데 잘못 읽은줄 ㄷㄷ
-
오야스미 2
캬루!
-
어삼쉬사나 준킬러 같은거
-
자꾸 저한테 생명과학 찍특을 판매해달라는 글이 많은데요, 최소한 올해는 찍특을...
-
사만다 시즌3랑 파이널 44~47 적중예감 42~45 떳는데 수능 때 2는 뜰 수 잇겟죠?………ㅠ
-
낼모레 수능인데 한파는 커녕 낮에는 걸으면 땀나더라… 라떼는 수능날 패딩입고 입구...
-
포부 적고가라 못 할 거 뭐 있 냐
-
개념도 좀 잘 훑어주는 그런 ..
-
개씨발
-
수능 끝나면 막상 수능 끝난 것이 실감이 안 나고, 막상 놀려고 하면 뭐 하고...
-
걍 치러가야지 마지막까지 힘냅시다
-
로맨틱코미디론 8
정통 로맨스 말고 로맨틱코미디는 단행본 기준 10-15화 내외로 끝내야 한다 그래야...
-
수능때 다가오니까 왜이렇게 눈물이 날거같지.. 다들 진짜 잘봐서 성불했음 좋겠다
-
병신 0
내가 니까짓거 만나려고 이렇게 코르셋 조이고 사는줄 아냐 양심이 있으면 반의...
-
소요 95분 작년에 사두고 못 푼 거 아까워서 푸는 중 #13 유일하게 못 풂,...
본문과는 상관없는 질문이지만, 여기 밖에 여쭤볼 곳이 없어서 질문 드립니다.
서울대 8명 정도 보내는 비평준화 고 1학년 올라가는데요, 내신 대비용으로 쎈을 풀고 있는데 c단계가 너무어렵고 오래 걸려서 빼고 ,풀고 있는데 괜찮을 까요?
네 괜찮습니다~
쎈 C단계는 수능 유형이라
처음 배울 때나 내신 대비용으로 보기엔 좀 어렵죠.
고1용 쎈이라면 C단계는 수능 유형과 떨어지고
계산만 지저분할 수도 있구요.
교과서 개념/문제 끝낸 후에
쎈 B형 중심으로 유형 연습하면 효율적일거라 생각됩니다.
학교 보충교재가 있으면 그것도 빠짐없이 봐야 하구요.
출제 교사 성향이나 중간/기말 난이도 조절 때문에
모의고사 유형이 내신에 출제되는 경우도 있습니다.
이 때문에 앞에 나열한 교재들을 모두 끝낸 후에 시간이 남으면
쎈 C단계 대신 최신 교육청 모의고사 기출을 공부하는 것도
좋은 방법일 것 같습니다.
좋은 글 감사해요^^
전 재수생인데 계산이 너무 많이 부족해서 쎈을 풀고있어요 아무래도 저는 c단계를 풀어보는것이 좋겠죠??
계산 능력을 키우기 위해
쎈 C단계까지 푸는 것도 괜찮긴 한데...
수능/모평 기출로 넘어가는 것이 좋지 않을까요?
쎈 C단계는 현역을 위한 수능 유형 맛보기라 생각되거든요.
기본을 쌓는 것은 쎈 B단계 정도로 충분할 것 같구요...
수능/모평 기출로 넘어가기 전에 연습이 필요한거라면
수능특강같은 교재가 더 괜찮은 선택이라 생각됩니다.
물론 시간이 충분하면 둘 다 하셔도 되구요.
좋은 글 잘 읽었습니다 ㅎㅎ
읽어주셔서 감사합니다~ ^^
오. ! 저도 수업시간에 자주 언급하던 내용들입니다. 사실 제한시간 내에 문제풀다보면 다양한 실수가 발생하는데, 미리 그러한 예시들을 알고있다면 조금 더 예방할 수 있겠지요^^
물론입니다.
수험생들이 시행착오를 거치며 파악하기엔
한계가 많을 수 밖에 없으니까요 ^^
저런 식으로 가려울 곳을 미리미리 찾아내야 하는데
공부하는 수험생 입장에서 생각하는 것이 참 어렵네요 ㅎㅎ
쎈쎄 늘 열심히 칼럼 올리시네요ㅋㅋ
따봉누르고갑니다
귀여운 마시로님 감사합니다 ^^
칼럼 목적이...
교재에 쓸 내용 정리하고, 피드백 받으려는 것도 있고
한 번 받기 시작한 관심 놓치지 않으려는 것도 있다 보니
무리하면서 계속 쓰게되네요~ ㅎㅎ
감사합니다~ 확률이 제일 난해한데 식이 나타내는 정보가 명확하다보니 재밌는 것 같아요. 매번 좋은 정보 유익하게 얻어가요~
확통 집필 시작해서 앞으로 종종 올릴텐데
잘 부탁드립니다~ ^^
이 칼럼과 관계는 없지만 ㅠ 수능 공부를 그냥 다시 하려고 하는데요. 교과서를 보고있는데, 학습목표가 그렇게 중요한가요??
네~ 중요합니다.
해당 단원에서 무엇을 알아야하는지
일목요연하게 나와있으니까요.
단원을 공부한 다음
학습목표에서 말하는 내용이 뭔지 잘 모르면
그 단원을 제대로 이해하지 못한거라 봐도 되구요.
그런데 오랜만에 공부하시는 거라면
교과서 학습목표에서 강조하는 것이 뭔지 감이 안올겁니다.
교과서 본문 또한 핵심적인 내용만 실려있고, 설명이 간결하기 때문에
이해하기 부족할 수도 있구요.
제 개인적으론
처음 공부할 때는 기본서나 인강을 이용하고
복습 단계에서 교과서를 보는 것이 좋다고 생각합니다.
조금이라도 알고 교과서를 봐야 뭘 말하려는 건지 느낌이 잘 오니까요.
좋은 답변 감사해요 ㅎ
이항분포의 정규분포로의 근사, 모비율과 표본비율. 결국 충분히 클때 둘 다 정규분포를 따른다고 알려져있음. 학생들의 입장에선 까라면 까야하는, 즉 그냥 받아들여라하는 두가지 도구를 통해 한 문제를 다른 시각으로 바라본 그대에게 제 마음을 드림.너무 당연한 사실이지만 간과할 수 있었던 부분을 짚어주심 굳굿궅국굳굿
요즘 박수칠 수학-확통편에서 통계 단원 쓰는 중인데
저 부분들 다 집어넣는 중입니다 ㅎㅎ
책 쓰면서 또 한 번 느끼지만...
통계 단원이 문제는 쉽지만 개념이 너~무 어려워요.
하하사실 통계가...ㅎㅎ수학이라고 하기 쫌 거시기한 그런 ㅋㅂㅋ 통계학 공부하시는 학부생 분들 돌 던지실라... 뭐 어쨋든 통계자체가 고교과정에서 논하기에 알려져있다 라는 부분이 좀 많아서 생각보다 개념을 전달하는게 까다롭죠ㅎㅎ