[이대은T] 매주 한 문제를 공개합니다.
안녕하세요 수학강사 이대은입니다.
여러분들은 수학을 푼다와 공부한다가 같다고 생각하시나요 다르다고 생각하시나요?
저는 만약 모의고사를 응시하거나 수능을 볼 때는 푼다가 맞지만 모의고사 후에 피드백을 하시거나 자습시간에 수학문제를 푸는 경우 공부한다가 되어야 한다고 생각합니다.
다시 말해서 시험을 볼 때 수학문제를 다루는 방법과 따로 공부할 때 다루는 방법이 만약 같다면 공부를 한다고 생각하지만 시간만 버리는 행위일 가능성이 높다는 것이죠!
앞으로 제가 오르비학원에서 수업한 문제 중 매주 한 문제씩 글을 적어볼테니 여러분들도 짧은 시간 내서 같이 풀어보고 제가 전달하는 내용을 얻어가시길 바랍니다!
이 영상은 글을 먼저 읽으시고 보시는 것을 추천할게요!
먼저 기출문제인 한 문제를 보겠습니다. 어렵지 않은 문제이니 한 번 풀어보세요!
답을 구하셨나요?
설명에 앞서서 만약 여러분들이 공부 중에 이 문제를 접했다면 푼 이후에 뭘 따로 고민할까요? 아니면 그냥 다음 문제를 풀러 갈까요?
저는 대부분의 학생들이 그냥 다음 문제로 넘어간다고 봅니다...
만약 답을 구하지 못했다면 해설지를 보거나 질문을 통해 풀이를 듣고 이해하고 넘어가겠죠..
근데 전 문제가 쉽고 어렵고, 풀리고 안 풀리고를 떠나서 어떤 문제든 얻어가는 점이 있어야 한다고 생각해요.
우선 이 문제의 풀이입니다.
그런데 이 풀이를 이미 알거나 새로 알았다고 해서 성적향상에 그렇게 크게 도움이 되지 않습니다.
그럼 도대체 어떻게 공부해야 성적향상으로 이어질까요?
우선 이 문제를 통해 얻어갈 수 있는 내용을 정리해보겠습니다.
1. 분수식의 극한값이 주어지면 어떻게 활용할 것인가
2. 다항함수를 구하는 문제는 풀이방향을 어떻게 잡을 것인가
3. 주어진 조건의 형태를 보고 삼차함수가 갖는 대칭성은 어떻게 활용할 것인가
이렇게 간단한 문제에서도 얻어갈 내용이 있습니다.
이 질문들에 대한 답을 스스로 한 번 구해보시고 위의 영상에서 제가한 설명을 보시면 도움이 될 거에요~!
만약 혼자 학습했을 때 문제가 어렵고, 쉽고를 떠나서 뭔가 얻어가는게 없다면 아마 고생만 하고 얻어가는 것은 없는 공부를 하고 있을 가능성이 높아요..
문제를 통해 얻은 지식을 정리하고 암기하여 같은 유형의 다른 문제에도 적용을 할 수 있어야 성적향상으로 이어집니다.
실제로 이 방식으로 학생들을 가르쳐 2023학년도 수능에서 원래 20, 30점대이던 학생들을 미적분 1등급을 받은 학생들이 있었습니다.
위에서 언급한 얻어갈 내용들은 자주 등장하는 조건들이니 위의 영상을 보시고 보다 확실한 이해를 통해 앞으로 적용이 가능하면 좋겠습니다!
(보셨다면 좋아요&구독 좀 부탁드릴게요..ㅎㅎ)
아 그리고!
1/24 도형과 관련된 무료특강이 있습니다. 관심이 있으시다면 아래의 링크로 신청해서 꼭 들어보세요~!
그리고 이건 제가 주말에 진행하는 단과인 점 링크입니다.
(약간 부끄럽네요...ㅎㅎ)
수험생 여러분들 모두 새해 복 많이 받으시고, 2024학년도 수능에서 모든 복 몰빵하셨으면 좋겠네요!!
다들 화이팅!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진심이다
-
고닉ㅇㅈ특 6
나보다못생긴사람없음
-
ㄹㅇ 생각의자...
-
난 너무 못생겨서 꿈도못꿈
-
설낮공 vs 건수의 12
머리는 건수의인데 설뽕에 가득참…. 본인이라면 어디가실거같으신지
-
ㄱㅁ이론..
-
ㅇㅈ 23
왼쪽이 저임
-
공부하러 감 1
시험 전날에 옯질하고 있음 안 될 거 같음..
-
이렇게 다들 사탐런하면 사탐 어려워지는거 아닌가요.. 10
하루에 사탐에 3시간정도 투자하면 어려워져도 해볼만하려나
-
아가 취침 6
잘자
-
. 0
.
-
ㅇㅈ 12
알아서식별해보셈
-
진짜 자기관리만 잘해도 평타는 먹고 들어가니깐 내 전전글 보셈 ㄹㅇ 남성분들은...
-
뱃지 보이나요? 11
달렸는지 모르겠어요 지1 서울 배성민 이미지
-
난 내 사진이 없음.
-
ㅈㄱㄴ
-
과외 하고싶긴한데 집이랑 대학이 거리가 멀어서 집 근처에 있는 학생을 가르치기도...
-
순식간이네
-
나 딱알았어 2
ㄱㅁ 치는애들이 쌉기만러임 ㄱㅁ칠때 쌉기만러들 표정
-
어떻게 하는게 효율적이고 좋을까요?? 강의라던지,공부할 부분이라던지.. 내신 아니고...
-
외울거 ㅈㄴ많아보이는데 결국 꾸역꾸역 외워지겠죠?? 유튜브 보는데 어질어질하던데.....
-
사수생 ㅇㅈ 10
팀 04의 출격
-
언미영생지 백분위 현역 47 96 2 93 81(이때 국어 선택과목부분 마킹을...
-
보건증은 좀.
-
ㅇㅈ 5
전신샷ㅇㅈ 너는의대가야겠다라는말ㄴㄴ
-
제일 궁금함
-
그냥 ㅇㅈ 32
심심해서요
-
잘생긴 형아들이면 쪽지 보내야함 빨리 급ㅂ해
-
재탕은에바지 1
안할게
-
빈부격자 좆되네..
-
영어 2>1올리분들 어케하셨나요
-
눈 ㅇㅈ 28
-
재테크 ㅇㅈ 0
수집 욕심을 버리니 10만원이 생기다.
-
고도근시들은 안경벗고 헤어스타일 바꾸면 누군지도 잘 못알아보겠는 경우가 허다함뇨...
-
진학사 3칸 1
모집인원 51명 작년 예비 182번까지 돌았던 과 가능성 있을까요?
-
아오기만그만.
-
캬캬
-
근데 요즘 이런 철학적인? 생각이 재밌는 거 같아요 1
외모와 자기관리, 재능과 노력 자식이 미래에 부모를 부양하지 않아도 되는? 낳아준...
-
ㅈㄱㄴ
-
살빼보라<<<< 13
실제로20kg뺐었음 옷잘입어봐라 무신사서옷도사입어봤었음 안경쓰지마라 그래서안경도안씀...
-
시험공부를 더 할 수 있지 않을까
-
너닿 볼까 2
흠
-
진짜 못생긴 사람들은 거의 없는 거 같던데
-
일반못생이면 외향성 리더십 능력 따위로 여자 반하게 만드는 경우 많이 봄 눈에서 하트가 나온다니께
-
2천이상은 받고 하방이 1.5-1.8천이라고 들었는데 궁금
-
ㅋㅋ..
-
그냥 잘씻고 친구랑 놀러다니면서 취미 즐기면 행복하지 않나 연애 안 하는 게...
-
현역 24수능 낮4높4322 재수 2506 백분위100인 1 중간2 211 25수능...
미계 형태로 바꾸면 미계가 같으니 변곡점이 1,-1 정중앙인 0이다로 쓰는거 아닌가요? 아마 기억이 맞다면 8번 문제였던거같기도하는데 , 과외했을 때도 애들한테 그냥 푸는게 다가 아니고 이런 문제에서도 충분히 교훈을 얻을 수 있다!라는 대표적인 썻던 문제로 기억하네요
오 맞습니다!!
풀이가 끝이 아닌 내용정리까지 해주셨으니 학생도 많은 도움을 받았을 것 같네요 :)
그냥 우선 (x^2-1)을 인수로 갖고 x를 곱하면 조건을 만족하게 되는듯
네네 극한식 해석만 끝나도 바로 다항함수를 잡을 수 있죠!
그 후에 최고차항 계수만 구하시면 간단하게 풀 수 있는 문제입니다~