[미적+확통] 간단한 자작문제
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
과생활, 동아리, 공부, 과외, 학원, 헬스, 주짓수 등등 폭넓은 질문 환영입니다.
-
댓글달아보세요 6
네
-
감사합니다 4
꺄
-
수능 찐막트? 6
응애...
-
경제 선택자가 그렇게 많은지 몰랐지 나는.. 다 여기있었구나
-
윤도영이랑 비교하고 있던데 그정도에요?
-
히히
-
보통 이과가 사탐런하면 뭐뭐 주로 함 25수능은 물1지2 했음
-
이공계 질받 24
서울대 공대에서 썩고 있는 늙은이입니다
-
누가 쓴소리좀 해주오...
-
본인은 장수면서 재수인 나보다도 이번 수능을 못 봤던데 그럼 본인은 좆같이도 노력을 안 한 건가?
-
덕코줍줍하기 6
-
호감오비르언 4
덕코주는오비르언
-
EBS 등급컷은 확정된건가요?? 생윤 30점이라 3등급이 간절한데 그냥 포기하는게...
-
저는 작년에 그 긴 꼬리도 못잡았네요 ㅠㅠ 작년기준 396점인가 그래가지고
-
치대, 약대, 수의대 가능할까요? 가능하다면 어디대학쯤까지 가능할까요?
-
헛소리만 늘어놓고 주무시러 가신거임?
-
둘 다 읽을건데 뭐먼저읽을까요
-
다들 나 빼놓고 로스쿨 날먹하고 있는줄 알았음...
-
수능본개백수도아닌데왜이렇게된것이지..
-
한식으로 미슐랭 3스타가 뛰어난지 일식으로 미슐랭 3스타가 뛰어난지 이야기하는데...
-
중대에서도 로스쿨 젤 많이 보내는 공공인재 다니는데 여기만 봐도 학점 따는거 일단...
-
경북의를 써야 한다는 게 왜 갑자기 지금 생각나는데
-
일년동안 국어 공부라고는 언매 개념 말고는 아무것도 안 했습니다. 그래도 국어는 6...
-
수능수준 미적분으로 커버되는지궁금함
-
이시점에 성적표 인증 없이 XXX 강사님 덕분에 1등급/xx점 받았습니다...
-
메타바꾸는법 9
그런 거 없다
-
군대 질문 2
오늘 신검인데 신검을 받고 입영통지서가 날라오면 그때 군대 연기 가능한가요?
-
저도 그 날먹좀 격하게 하고싶어요
-
무릎꿇고 빔뇨
-
loss쿨이잖아 ㅋㅋㅋㅋㅋ 옯하하하하하
-
ㅈㄱㄴ
-
걍 둘 다 꿈같은거임
-
근데 저분은 1
로스쿨, 의대 둘 다 쟁취하지 못 하셨는데 왜 화가 나신 것...?
-
이미 사고회로가 수능에 박혀있으면 수능절대주의적인 사고로 다 바라볼 수 밖에 없음...
-
시이이발 0
나도 메타에서일하고싶다
-
딱히 반박할 생각 없긴 한데 어떻게 메디컬 갈 수준이면 서울대 로스쿨이 날먹이니...
-
뭐지 이런 메타는 처음 보는 거 같은데
-
무한n수박고 의대갈필요가…
-
6모 44424 9모 442?? 정도 였는데 이렇게 나옴 갠적으로 외대글로벌 아주대...
-
그러면서 본인은 한의대 알아보고 있고 로스쿨 안가고 장수하고 있는 이유 좀
-
7월쯤에 설경설로 주작글이었나 올라온 거 생각나네요 뭐 리트가 몇 점이고 어쩌고...
-
코딩 아예 안해본 사람 기준으로 말씀드립니다....
-
화학 44 1
** 이거 백분위 70대로 내려가는 가능세계 있음? 지금 82로 잡히는데 좃같네 진짜 ㅋㅋㅋ
-
진짜 몰라서 물어보는데 설경이 의치한약수 한테 다 밀리나요? 진짜 설경 이렇게 낮았어요..? ㅠㅠ
-
공대 및 자연대를 지망하는 코딩 꼬꼬마들을 위한 팁 10
바로 위키독스의 '점프 투 파이썬' 입니다...
-
어떻게하지
하.....2번 도저히 안 풀리네요...
님 gx 정의에 오류없는거 맞죠?
오류 있었네요 죄송..
앞으로 자작문제는 해설까지 쓴 다음에 올려야겠네요
g(x) 분자를 1로 바꾸고 f_X (x) = m g_n (x)로 바꾸면 됩니다
그러면 저번에 님이 푸신 2024번 합성된 적분이랑 똑같은 문제에요
"간단"의 사전적 정의가 언제 바뀌었나요?
g(x)정의 저대로여도 풀립니다. 기본적으로 귀류법을 통해 모든 자연수 n에 대하여 p(n) > 1 을 얻고 귀납법을 통해 n이 2 이상이면 g_n의 (0,1)에서 치역이 (0,m]임을 얻습니다. 그리고 3이상의 자연수 n에 대하여 p(n) < 2임을 귀류법을 베이스로 합성함수의 개형 분석(흔히 말하는 N축)과 p(n) >= 2 일때 g_n(x)=2를 만족하는 x를 찾기 위한 수열을 정의해서 이 수열이 매우 빠르게 1/2 밑으로 수렴해버리는걸 이용한뒤, 적당한 부등식과 계산을 통해서 1 > 1 이라는 모순을 찾아 증명할 수 있습니다. 즉, p(2023)=1 이고 (1)에서 이미 p(1)=2 임은 얻었기때문에 p(2) 만 계산해주면 끝납니다.
이에 대해서는 제가 시간이 된다면 TeX로 작성해서 업로드하겠습니다
https://orbi.kr/00064914444