미분에 대하여
오랜만에 공부 얘기 좀 써 보려고 합니다.
제목 그대로 미분에 대해서입니다. (제가 제목 짓는 센스가 없어서...ㅋㅋ;;)
“미분계수란 무엇인가요?”라고 물으면 아마 “접선의 기울기”라고 대답하겠죠?
맞는 말이긴 하지만, 제 경험에 비추어 보면, 여기서도 찝찝함이 조금 남습니다.
“왜 접선의 기울기를 궁금해하지? 애초에 미분은 왜 하는 걸까?” (궁금해하세요.)
이 물음에 대한 저의 답을 이야기하고자 합니다.
우리가 모르는 함수 가 한 점 를 지난다고 합시다.
이 정보만을 갖고 우리가 에 대해서 무엇을 더 알 수 있을까요?
우리가 정확히 알 수 없는 때로는 복잡하고 때로는 추상적인 이상한 함수라도 우리는 이 함수를 알아야만 한다고 합시다.
결국 우리는 이러한 함수를 우리가 “통제하고 다루기 쉬운 꼴”로 “근사”해야 하겠지요.
여기서 두 가지를 명확하게 해야 합니다.
1. 우리가 통제하고 다루기 쉬운 꼴은 무엇인가?
2. 어떠한 근사가 좋은 근사인가?
우리가 통제하고 다루기 쉬운 대표적인 꼴은 "선형", 일차함수가 될 것입니다.
즉, 우리는 미지의 함수 를 아주 좋은 일차함수로 선형근사하고자 합니다.
그렇다면 어떠한 직선이 좋은 근사가 될 수 있을까요?
함수 가 점 를 지난다는 조건에 의하여 기울기가 미지수인 직선을 생각해 봅시다.
그러면 원래 함수와 당연히 오차가 생기겠지요. 그 오차를
라고 합시다.
아래 그림을 보면, 점와 멀어질 수록 일반적으로 원래 함수와의 차이는 커질 수 있겠지요.
하지만 에 가까워질 수록 그 차이는 의 값에 상관없이 항상 0에 수렴하게 됩니다.
그럼 여기서 가 어떠한 값을 가져야 차이가 0으로 가장 빠르게 줄어들 수 있을까요??
위의 두 번째 물음인 좋은 근사에 대한 답이 바로 다음과 같습니다.
좋은 근사 = 원래함수와 선형근사시킨 직선의 오차가 가장 빠르게 줄어들도록!
직관적으로, 오차가 줄어드는 속도가 가장 빠른 직선이 가장 좋은 선형근사라고 할 수 있겠습니다.
이제 우리는 오차가 가장 빠르게 줄어들도록 직선의 기울기를 결정해야 합니다.
이때 0으로 줄어드는 속도가 빠르다는 것은 극한의 언어를 빌려와서 설명할 수 있습니다.
똑같이 0을 극한값을 갖더라도 함수식이 갖는 인수의 개수가 더 많을수록 더 빠르게 0으로 수렴할 수 있겠지요? (조금 더 엄격하게, big O notation, little o notation을 통해 설명해야겠지만 넘어갑시다.)
0이 되는 인수를 하나 제거하더라도 여전히 0으로 줄어든다면 속도가 더 빠르다고 할 수 있겠습니다.
이것을 수식으로 옮겨 적으면 다음과 같겠네요.
우리가 찾은 기울기가 다음과 같게 됩니다!
우리는 위 극한값이 되는, 선형근사시킨 직선의 기울기를 "미분계수"라고 부르기로 약속한 것입니다.
그리고 이렇게 선형근사시키는 행위를 "미분"이라고 약속하며,
이런 최적의 선형근사가 가능하다면, 즉 위의 극한이 존재한다면 우리는 "미분 가능"하다고 부릅니다.
긴 글 읽어주셔서 감사하고, 여러모로 조금이나마 도움이 되셨길 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
좋아요 1 답글 달기 신고
-
기도가 먹혔나 1
오늘 오전이랑 내일 오후에만 눈온다네 제발 오후 늦게 눈와라 제발
-
고려대, 지스트, 경희대, 동국대, 부산대, 서울대, 성균관대, 아주대 연세대,...
-
뭐지
-
밥을 0
지금 김밥을 먹을까 도착해서 부산에서 아침을 먹을까 10쯤도착예정인데
-
살말 0
-
일어날 수 있을지 고민하기보다 걍 7시 기차 지르니까 4시에 자동으로 눈이...
-
기상 1
-
슈바 집 정전됨 2
눈 많이 와서 그런가 밖에서 번쩍하면서 우웅하더니 정전됨 냉장고 shut down...
-
리 3
리
-
버 0
버
-
풀 0
풀
-
결과가 끝까지 만족스럽지 않지만 떠나야 할 때가 왔구나 하고 싶은 것도 없는데
-
2026 수능! 겁내지 말고 주어진 시간에 끝까지 최선을 다하는 시간이 되길!!
-
올해 수능을 쳤고요 수능을 정말 심하게 망쳤습니다.. 6,9모때는 중경은 대부분...
-
탐구과목은 물1물2 선택했습니다
-
전 2
-
기 0
-
쥐 3
-
모자 쓰고 다녀야징
-
아 눈오네 2
-
뭐냐 나 잔다 6
내일은 또 뭐하지
-
어떻게 위로해주는게 좋을까
-
고데기 할말? 3
스타일링은 못 하고 안하면 90퍼 확률로 머리가 철수처럼 돼서 그거 방지용으로...
-
오드구오의 데뷔 정규앨범 사클래퍼 특유의 날것 그대로의 느낌과 야마가 듣기 좋게...
-
다들 안 자고 머함 10
난 일어난거임!
-
꿈조차 없던 놈의 노랠 이젠 다들따라불러 엄마 랄랄라랄라 2
1년 전 무너졌던 어린애가 아냐 이젠 달라 엄마 난나나난난
-
후후
-
이미지 써드림 25
머리만 말리고
-
잘자 굿나잇 0
-
마감
-
절대로 오르비언들을 놀라게해선 안돼!
-
님들님들 급함 6
프사 추천좀
-
피오르 같은데 말고 메가스터디에서 40만원대에 정시 상담 해주는 거 있는걸로 아눈데...
-
이미지적어드림 30
몇명만
-
좀보이드 해볼까 근데 친구들이 이 게임을 같이 할까
-
지금 반도체가 취업 제일 힘듬. 그냥 똑같이 3d업무 야가다인거 기계가서 설비하는게 취업도 편할듯
-
기분탓인가
-
해파리~ 지역을 지~키자~!
-
작년에 비해 국어수학 표점이 낮으니까 작년과 환산방식이 동일하다는 가정하에 표점...
-
갑자기 유튜브가 너무 재밌다
-
재밌었고 감사했습니다 ㅎㅎ 인증같은거 하지말걸 그랬네요
-
게시글 밀기
-
건대 vs 외대 5
건대 경영이랑 외대 자전 or 경제학과 어디 가는게 낫나요? 문과입니다
-
왜 나만 안돼 5
... 열심히 한 수시도 망하고 열심히 한 정시도 망했는데 그러면 내가 학점을 잘...
-
잔다 6
르크
-
이제 자야지 2
이제부터 오르비는 내 공부 기록용이다
-
한시간 전에 찍은건데 음 오랜만에타니좋네요
-
얼버기 2
그닥 잘 자진 못한듯? 30분 자다 깼다가 다시 3시간반정도 잔듯
-
선착순 10