엄밀한 수학(1): 구간 별로 정의된 함수의 미분 가능성
얼마나 오래 갈 지는 모르겠지만, 고등 수학에서 빈번하게 다뤄지는 몇 가지 주제에 대하여 조금 엄밀하게 다뤄보는 글을 쓰려고 합니다. (주제 추천 받아요.)
엄밀한 수학이지만, 수학을 전공하지 않은 고등학생 정도의 수학 지식을 갖고 있는 분들도 최대한 이해할 수 있도록 써 보려고 합니다.
첫 번째 주제는 [구간 별로 정의된 함수의 미분 가능성] 입니다.
[2021학년도 9월 모의 평가 10(나)]
위 문제와 같이 구간 별로 정의된 함수의 미분 가능성을 묻는 경우, 미분 가능성의 정의보다는 대부분 다음 두 가지 식의 연립으로 해결합니다.
(i)은 [미분 가능하면 연속이다.]의 성질을 이용하여 각각의 식에 1을 대입하여 같다고 놓고 구합니다.
(ii)는 각각의 식을 미분하고 1을 대입하여 같다고 놓고 구합니다.
(i)은 자명합니다. 문제가 되는 부분은 (ii)의 논리입니다. (ii)는 "도함수는 x=1에서 극한값이 존재한다."는 것을 의미합니다. 이를 엄밀하게 규명하기 위해 몇 가지 명제를 떠올려봅시다.
명제1: "미분 가능하면 도함수가 연속이다."
수학을 조금 깊게 공부해 본 성실한 고등학생이라면 위 명제1이 거짓임을 알고 있을 것이고, 또 그 중 대다수는 그의 반례도 알고 계시리라 생각합니다. (단, 그 역은 성립하죠.)
그렇다면 결론부의 조건을 조금 더 약화시켜 생각해봅시다.
명제2: "미분 가능하면 도함수의 극한값이 존재한다."
명제2 역시도 명제1의 반례로 어렵지 않게 거짓임을 보일 수 있습니다.
그럼, (ii)의 등호가 성립함을 보장해주는 근거가 되는 명제는 무엇일까요? 우리는 미분 가능한 함수에 대하여 그의 도함수의 극한값이 존재한다는 것은 알 수 없지만, 최소한 문제 조건으로부터 도함수의 좌극한과 우극한이 각각 존재한다는 것을 알 수 있습니다. 즉, 다음 명제를 생각해볼 수 있겠습니다.
명제3: "미분 가능하고 도함수의 좌극한과 우극한이 각각 존재하면 도함수의 극한값은 존재한다."
위 명제3이 참이라면, 우리의 최종 목적인 (ii)의 논리적 근거를 마련할 수 있습니다. 위 명제3의 참을 설명해주는 것이 바로 다르부 정리(Darboux's Theorem)입니다.
고등학생이 이해할 수 있는 언어를 기반으로 다르부 정리의 내용을 살펴봅시다. (증명은 "Introduction to Real Analysis by Robert G. Bartle"을 참고했습니다.)
다르부 정리 (Darboux's Theorem)
: 함수 f가 닫힌 구간 [a, b]에서 미분 가능하고 k가 f'(a)와 f'(b) 사이에 있을 때,
f'(c)=k를 만족시키는 c가 열린 구간 (a, b)에 존재한다.
즉, 미분 가능한 함수의 도함수는 사잇값 정리의 결론을 만족시킵니다.
[증명]
미분 가능한 함수 g를 다음과 같이 정의합시다.
g가 연속이므로 최대-최소 정리에 의해 닫힌 구간 [a, b]에서 최댓값을 가집니다.
이므로
g는 x=a에서 최댓값을 갖지 못합니다. 이와 비슷하게, x=b에서도 최댓값을 갖지 못합니다.
즉, 닫힌 구간 [a, b]의 경계에서는 최댓값을 갖지 못하므로 최대가 되는 지점을 x=c라 할 때, c는 열린 구간 (a, b)에 존재합니다. 따라서 다음이 성립합니다.
Q.E.D
다시 우리의 원래 목적으로 돌아가서, 위 다르부 정리에 의해 미분 가능한 함수의 도함수가 좌극한과 우극한이 각각 존재한다면 반드시 그 두 값이 같아야 합니다. 그리고 더 나아가 그 지점에서 도함수는 반드시 연속이어야 합니다. 이 명제3을 다르부 정리에 의해 더 강한 조건으로 바꿔 다음 명제4가 참임을 알 수 있습니다.
명제4: "미분 가능하고 도함수의 좌극한과 우극한이 각각 존재하면 도함수는 그 지점에서 연속이다."
처음의 문제에서 f'(x)의 x=1에서 좌극한과 우극한이 각각 존재하므로 위 명제4에 의해서 f'(x) x=1에서 연속입니다. 따라서 (ii)의 등호가 성립합니다!
제 글이 그닥 많은 사람들이 읽지는 않지만 ㅎㅎ;; 개인적으로 정리해보고 싶었던 주제였습니다. 조금이나마 도움이 되셨으면 좋겠습니다. 감사합니다:)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
낮아지는건가요? 메가스터디에서 세종대 환산점수 최고점이 올해가 작년보다 26점...
-
행시 외시 Cpa 로스쿨 공무원 공기업 그 외 각종 문과 전문직 시험들 진로들...
-
어느정도임?
-
서울대 못가면 씨파준비하거나 컴전 복전하거나 씨파 시작하거나 등등
-
응응
-
이런 그림이 지구본 타원으로 펼친 것 마냥 지구를 중심으로 138억광년 -...
-
뻥임뇨
-
붕어빵샀어요 9
돼지처럼먹기
-
오르막은 걸어다니기도 힘든가 보네.. 이 정도면 휴강하는 게 맞지 않을까.. 제발
-
ㄱㄱ
-
타이밍 놓쳤네 다음에 써야지
-
탑베인 탑그웬 0
웅장하다.. ㄷㄷ
-
1) 사탐 평백 98일 때 2) 사탐 1컷 일 때
-
덕코 내놔 4
주세요
-
다들 잘자셔요 8
저는자러감
-
암기못함 수학좋아함 친화력애매함 좀 I라서 국어못함 진짜 한의대밖에 없는거임뇨?근데...
-
연대 뒤에 있는 오르막길에서 조심조심 걸어올라가다가 한번 넘어지고 다시 일어나자마자...
-
고답적이 뭔데 ㅅㅂ
-
좋은밤이에요 6
요새 날씨가 춥네요 옷 따뜻하게 입어요
-
본인 나2였었는데 궁금해서
-
여성의 사고방식. 11
갈등조장 아닙니다^^
-
여명808 같은 숙취해소제는 왜 이렇게 비쌈.. 조그만 게 그 값어치의 효과가 있는지 궁금해요
-
이비에스등급컷은 너무 낮고 진학사거는 너무 높고 메가스터디가 실채점컷이랑...
-
지1 어떰뇨 6
올해 너무 불이라고 해서 좀 무섭긴한데 지2보단 천상일까요
-
투투하고싶다 5
고점을 꿈꾸며 고르고싶음
-
제발
-
연애마렵다 2
외모9등급탈출언제함뇨
-
오르비 폼다뒤 8
-
언미지1생2 (55%) 언미사문생2 (30%) 언미생2지2 (그대로) (15%)
-
역시 딴따라들하고 보법부터가 다르네 배운사람.
-
으어어어 12
으어엉
-
제 1시간이 삭제되었습니다ㅜ
-
국숭은 무리일 것 같고… 세단 ㄱㄴ??
-
잘자요 6
자러갑니다
-
이미교재를샀긴했다만.. 단순 궁금증
-
오우예
-
풀이가 안 보이면 내가 모르는 게 있어서 안 풀리는 걸수도 있으니 (특히 발상적인...
-
뽀록이 좀 있어야하거나 아님 스타트 성적이 좀 낮아야댐뇨
-
D-7 0
7일 후면 누가 맞는지 판명난다
-
정우성,디카프리오식 n명이랑 자유연애(혼외자는 쫌 에바니까 피임은 잘한다 가정하고)...
-
서울대 낮공 or 농생대 vs 연세대 화공 서울대는 추합 가능할 거 같고 연대는...
-
공부 좀 못해도 지지해주는 부모님 가진 친구들 보면 5
너무 부러움.. 나는 부모때문에 제일 힘든데 왜 3년 내내 성적 마음에 안드니까...
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅠㅠ
-
겟 어웨이~
-
8-7 11시간 주 6일 근무가 디폴트다 ㅋㅋㅋㅋㅋ
슈크란